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Research Framework

I) Question Generation & Selection

 Over 1M QA pairs from CSKG
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III) Language Model Selection & Adaptation
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Code&data:  
https://github.com/saccharomycetes/commonsense-with-KG

Zero-shot evaluation

High domain overlap:

CommonsenseQA [Talmor et al., 2019] 
(CSQA) 
SocialIQA               [Sap et al., 2019b]
(SIQA) 

Low domain overlap:

Abductive NLI    [Bhagavatula et al., 2019]
(ANLI)  
PhysicalIQA          [Bisk et al., 2020] 
(PIQA) 
WinoGrande         [Sakaguchi et al., 2019]
(WG)

 Benchmarks
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Results: Test Data Properties Future Work

🙌
Consistent 

improvement 
across tasks

🤝
Optimal training data 

size depends on 
LM size and architecture

👐
Natural distribution 

Is the 
optimal sampling strategy

🖐
Dimension-based 

strategies teach LMs
complementary 

knowledge

👐
Knowledge training is most effective for questions with 

short answers and dissimilar answer candidates

Mixture of models

Explainable zero-shot commonsense reasoning

More realistic tasks 

Problem Statement

Zero-shot training of in-house LMs  with structured 
knowledge has proven effective (Ma et al., 2021)

Many open questions:
● Overall impact to models of knowledge training?
● The optimal training knowledge data size for LMs?
● The best training data sample strategy?
● LMs’  ability of generalizing the knowledge?
● The connection between model’s accuracy and 

properties of the task?
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