A Study of Zero-shot Adaptation with Commonsense Knowledge

Jiarui Zhang, Filip Ilievski, Kaixin Ma, Jonathan Francis, Alessandro Oltramari

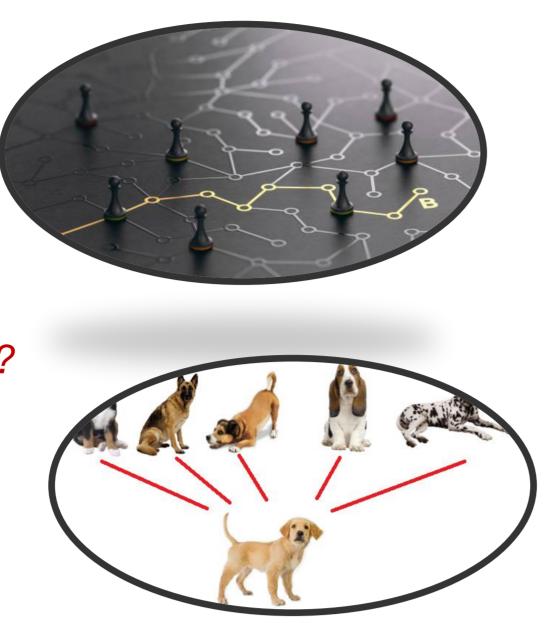
University of Southern California, Information Sciences Institute Faculty of Sciences, VU Amsterdam Language Technologies Institute, Carnegie Mellon University Human-Machine Collaboration, Bosch Research Pittsburgh

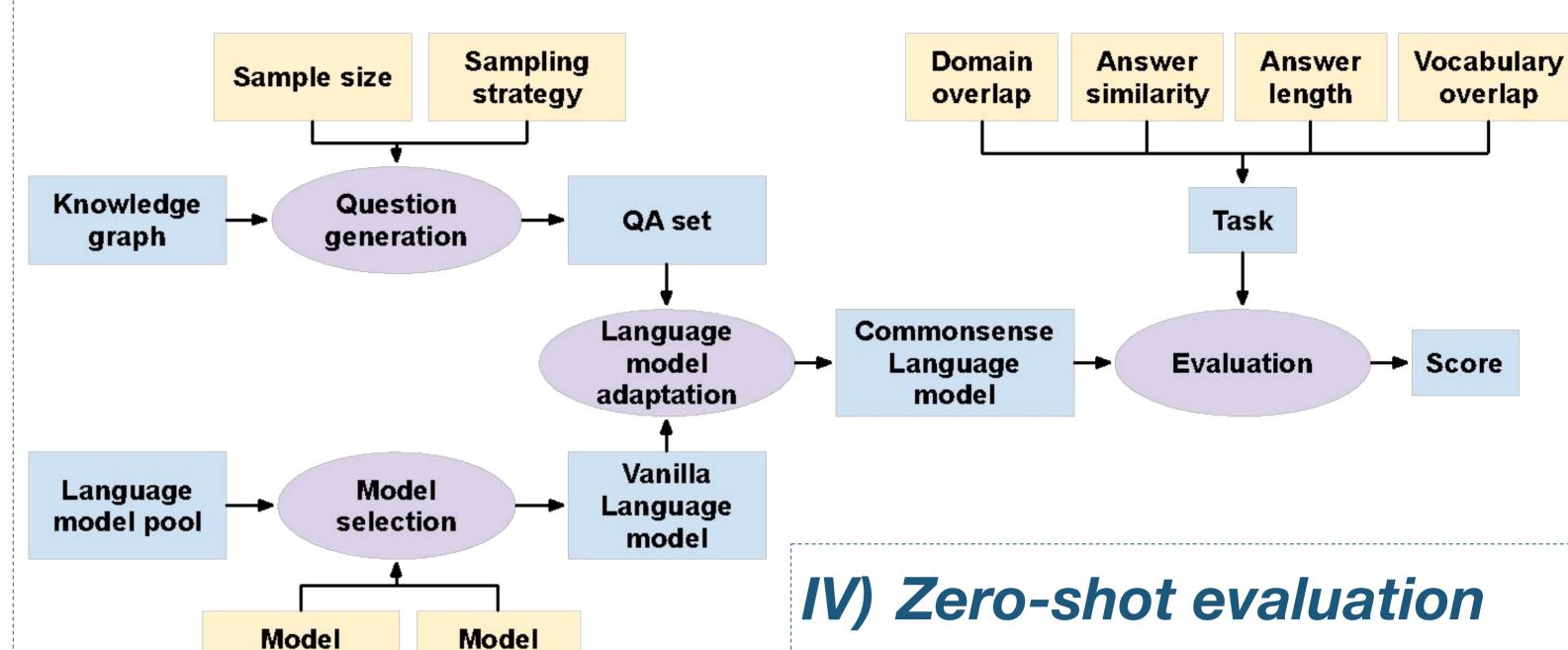
Problem Statement

Zero-shot training of in-house LMs with structured knowledge has proven effective (Ma et al., 2021)

Many open questions:

- Overall impact to models of knowledge training?
- The optimal training knowledge data size for LMs?
- The best training data sample strategy?
- LMs' ability of generalizing the knowledge?
- The connection between model's accuracy and properties of the task?

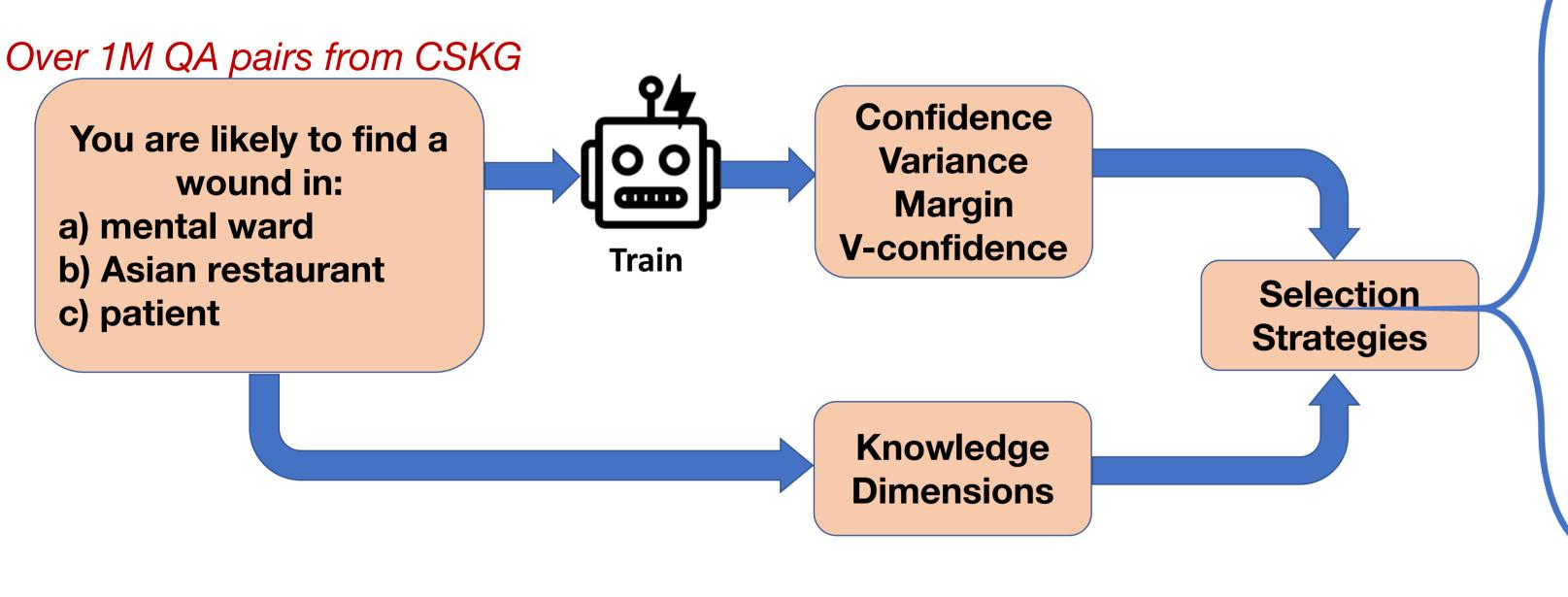




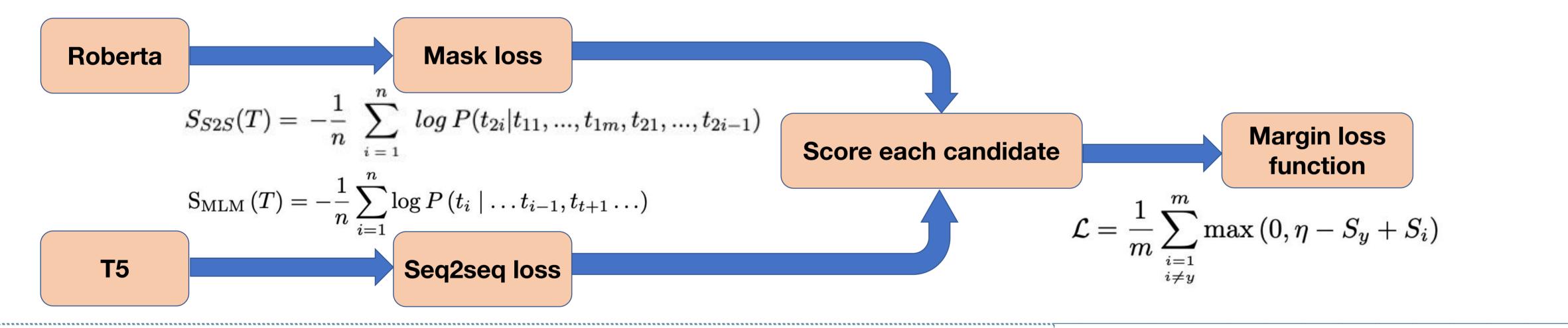
Research Framework

architecture size

I) Question Generation & Selection



III) Language Model Selection & Adaptation



Random

Uniform (same size each dimension) Temporal (knowledge dimension) Desire (knowledge dimension) Taxonomic(knowledge dimension) Quality(knowledge dimension) **Rel-other(knowledge dimension)** High vanilla confidence Low vanilla confidence High confidence Low confidence **High variability** Low variability High margin loss Low margin loss

Test data properties

Length
$$AL(q) = \sum_{i=1}^{n} |T_{A_i}|$$

Similarity $AS(q) = rac{|T_{A_i} \cap T_{A_j}|}{|T_{A_i} \cup T_{A_j}|}$

Vocabulary $VO(q) = rac{1}{m} \sum_{k=1}^m rac{1}{f(t_k)}$

Benchmarks

High domain overlap:

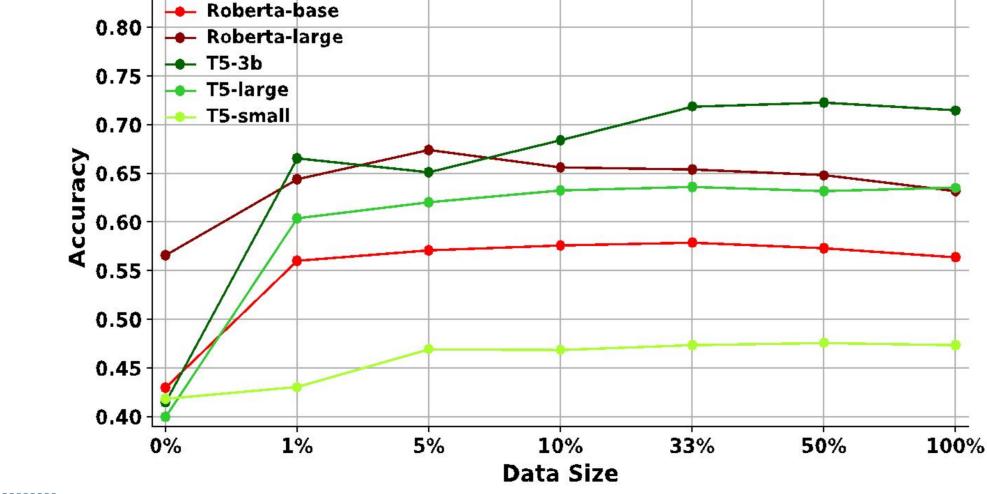
CommonsenseQA [Talmor et al., 2019] (CSQA) **Social** [Sap et al., 2019b] (SIQA)

Low domain overlap:

[Bhagavatula et al., 2019] Abductive NLI (ANLI) **PhysicallQA** [Bisk et al., 2020] (PIQA) WinoGrande [Sakaguchi et al., 2019] **(WG)**

Results: Best Model Comparison

Model	LDO			HDO				
	aNLI	WG	PIQA	SIQA	CSQA	Avg(LDO)	Avg(HDO)	Avg
Majority [Ma et al., 2021a]	50.8	50.4	50.5	33.6	20.9	50.6	27.25	41.2
RoBERTa-large [Liu et al., 2019b]	65.5	57.5	67.6	47.3	45.0	63.5	46.1	56.6
COMET [Bosselut et al., 2019]	-	-	-	50.1	-	-	*50.1	*50.1
Self-Talk [Shwartz et al., 2020]	-	54.7	70.2	46.2	32.4	*62.5	39.3	50.9
SMLM [Banerjee and Baral, 2020]	65.3	-	-	48.5	38.8	*65.3	43.7	50.9
Ma et al. [Ma et al., 2021a]	70.5	60.9	72.4	63.2	67.4	67.9	65.3	66.8
Dou & Peng [Dou and Peng, 2022]	-	-	-	59.9	67.4	-	63.6	63.6
RoBERTa-base (ours)	59.9	53.1	65.7	54.6	53.6	59.6	54.1	57.4
RoBERTa-large (ours)	71.5	60.0	72.6	63.6	66.4	68.0	65.0	66.8
T5-small (ours)	50.6	51.6	56.2	42.3	36.4	52.8	39.4	47.4
T5-large (ours)	66.1	58.7	70.8	57.5	63.1	65.2	60.3	63.2
T5-3b (ours)	76.6	71.0	76.7	65.3	69.9	74.7	67.6	71.9
RoBERTa-large (supervised)	85.6	79.3	79.2	76.6	78.5	81.4	77.5	79.8
T5-3b (supervised)	87.5	84.4	76.3	78.6	81.5	82.7	80.1	81.7



Results: Sampling Strategies

Strategy		LDO			H	DO			
		aNLI	WG	PIQA	SIQA	CSQA	Avg(LDO)	Avg(HDO)	Avg
Random	5%	65.9	56.5	70.5	55.4	61.9	64.3	58.7	62.0
Dimension	temporal	66.6	56.4	71.2	54.9	63.4	64.7	59.2	62.5
	desire	64.4	57.9	69.6	55.9	62.2	64.0	59.1	62.0
	taxonomic	61.8	54.0	66.8	52.8	57.5	60.9	55.2	58.6
	quality	66.8	58.4	70.0	56.4	59.6	65.1	58.0	62.2
	rel-other	61.0	52.5	65.9	51.7	54.0	59.8	52.9	57.0
Uniform		65.3	57.5	69.2	56.6	62.7	64.0	59.7	62.3
Vanilla-conf	high	65.3	56.8	69.0	55.5	57.5	63.7	56.5	60.8
	low	64.0	56.0	68.1	52.0	59.6	62.7	55.8	59.9
Conf	high	62.9	53.8	66.5	53.9	57.0	61.1	55.5	58.8
	low	41.8	48.5	42.0	24.7	07.7	44.1	16.2	32.9
Varibility	high	64.0	54.6	65.1	51.1	54.5	61.2	52.8	57.9
	low	61.7	54.9	66.8	52.7	55.9	61.1	54.3	58.4
Margin	high	63.8	54.5	67.2	52.8	56.9	61.8	54.9	59.0
	low	41.5	45.0	43.7	24.1	09.1	43.4	16.6	32.7

dimension: temporal

Q:Jan went out with Quinn's friends and had a great time. What does Jan need to do before this? A1:get dressed(*); A2:cancel her plans; A3:see Quinn's Friends again

dimension: desire

Q:Robert has no regret for punching Justin in the nose because _ was the victim of injustice. A1:Robert(*); A2:Justin

Natural distribution Is the

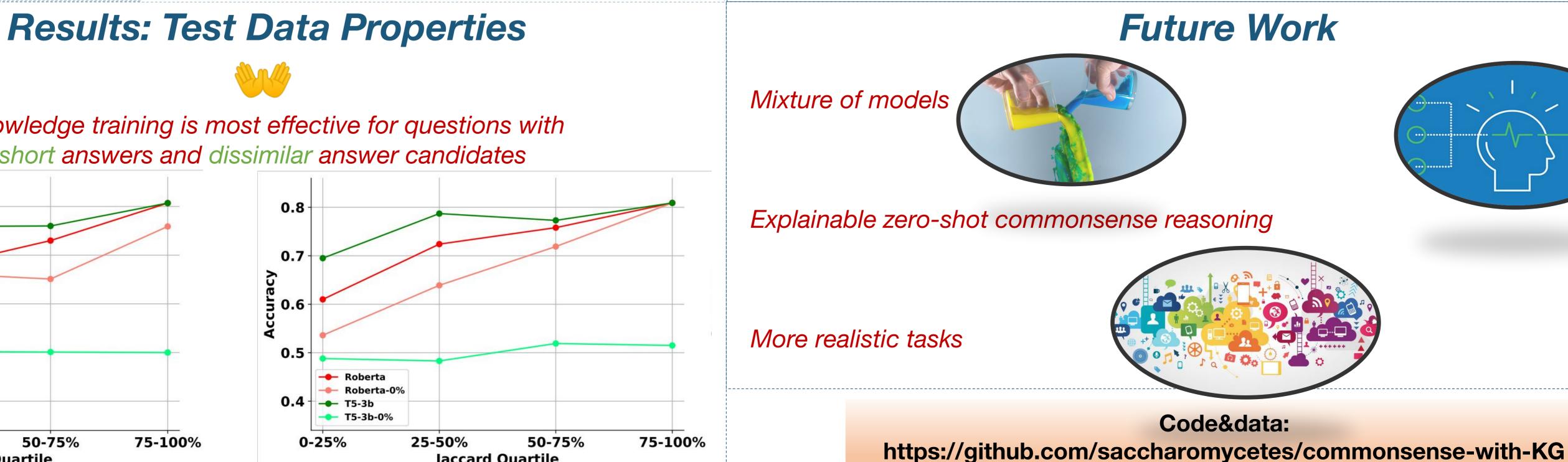
optimal sampling strategy

dimension: quality Q:What can machines do that humans cannot? A1:fail to work; A2:perform work; A3:answering questions; A4:see work; A5:fly(*)

complementary knowledge

0

0



Knowledge training is most effective for questions with short answers and dissimilar answer candidates 0.8

0.7

Accuracy 9.0

0.5

0.4

--- Roberta

--- T5-3b

0-25%

Roberta-0%

- T5-3b-0%

25-50%

Jaccard Quartile

