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RESULTS & ANALYSIS

Table 1: ProPara test set results. Modeling: E=entity, T=timestep-specific, GC=global context, GO=global outputs. et line Exhaust
Procedural Paragraph Gold CGLI TSLM KOALA Gold CGLI TSLM KOALA
Modeling Sentence-levl Documenlevl Sipts T s st e tp e enste | | M ot | W M
Model E T GC GO | Catl Cat2 Cat3 Macro?vd Micro?vy P R F1 engine take in a cylinder-full of air and gasoline.
ProLocal (Dalvi et al., 2018) Y Y N NJ|627 305 104 34.5 340 | 81.7 36.8 50.7 i it i WL < Y ST L W AT B
ProGlobal (Dalvietal.,2018) |Y Y Y N | 63.0 364 3509 45.1 454 | 61.7 488 51.9 e e e
ProStruct (Tandon et al., 2018) | Y Y N Y - - - . -1 743 430 545 " powerful. R v v/ ol v el
KG-MRC (Das et al., 2018) N Y N N | 629 40.0 38.2 47.0 46.6 | 64.5 50.7 56.8 Step4: \:I{ur;e:ptat:f( glhthgog r:\?ta.scge:pt;i t:())p of its stroke, e ¢ vf %/ oo v’ %f .
NCET (Gupta and Durrett) N N Y Y| 737 47.1 410 53.9 54.0 | 67.1 58.5 625 GkiEe the Gasoiine. Cylinder -> Cylinder N/A -> N/A i)
IEN (Tang et al., 2020) N N Y Y | 71.8 47.6 40.5 53.3 53.0 | 69.8 56.3 62.3 Step5: The gasoline charge in the cylinder explodes, DR — Gt Slben. ks
DynaPro (Amini et al., 2020) Y Y N N| 724 493 445 55.4 555 752 58.0 65.5 SH1Ving the piswon GOW: cmirwn N NN ACROPNE SR WIS R
Step6: Once the piston hits the bottom of its stroke,
TSLM (2021 Y Y Y N|788 568 409 38 584 [684 689 686 O e s | | e V)V V| | ot N L
KOALA (Zhang et al., 2021) N N Y Y | 785 533 413 57.7 575 V7777 644 704 the cylinder to go out the tailpipe.
CGLI (Ours) Y Y Y Y | 80.3 60.5 48.3 63.0 62.7 | 749 70.0 724
CGLI (Ours) + Data Augmentation | Y Y Y Y | 80.8 60.7 46.8 62.8 624 | 75.7 70.0 72.7 Figure 5: Example predictions on ProPara from three models for two entities. Red font indicate errors.
* CGLI achieves high precision and high recall, by considering all four model aspects i . Braconditions Table 5: Error Examples on TRIP. The conflicting pairs
* The gains over the baselines are mainly from the harder-to-answer categories : & Effects are marked with *, and the entity of interest with italic.
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RN nderstanding B Con_.fll_ct Step 2 & n washed er hair in the bathtub
B CGLI (Ours) B KOALA (Zhang et al. 21) i TSLM (Rajaby et al. 21) Predictor Step 4 Ann used the hair dryer to get ready to go out.

Backbone

Re Ann applied deodorant to her armpits.

& *Ann put her pants on.
- |"> Implausible - (Effects, is wet), Pred: False, Gold: Irrelevant
= * Ann ironed her pants before going out.
- (Preconditions, 1s wet), Pred: True, Gold: Irrelevant
*John forgot his notebook at home.
- (Effects, location), Pred: Moved, Gold: Irrelevant
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o L Table 4: Results on the TRIP dataset. The F1 scores of last two columns are Macro averages of 20 attributes.

Model Accuracy  Consistency  Verifiability = Precondition F1 Effect F1 John sat at his desk.
53 |- TRIP-RoBERTa (Storks et al., 2021) 73.2 19.1 9.1 51.3 49.3 John opened up his book bag.
CGLI (Ours) 93.4(41.5) 76.3(£1.7) 24.8(*1.6) 70.8(£1.8) 74.9(x1.7) * John took out his notebook
CGLI (Ours) No CRF 94.1(%0.7 77.3(£1.0 28.0(%+2.5 72.1(+1.6 75.6(+=1.6 .l . .
40 _ . - ( ) ( ) ( ) ( ) ( ) ( ) - (Preconditions, location),
Inputs-P Inputs-R Outputs-P  Outputs-R  Conversions-PConversions-R  Moves-P Moves-R | | | | - Pred: Picked up, Gold: Taken out of container
Figure 4: Document-level evaluation on ProPara test set, split by precision (P) and recall (R) per category (Inputs, * CRF may not be helpful for modeling implausible stories John began writing down notes.

Outputs, Conversions, Moves). * Future work can look into improving the commonsense ability of the model
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