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Consolidated learning is a new formulation of
meta-learning in hyperparameter optimization
motivated by practical challenges to build ML models for
similar tasks (domain-specific),
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Importance of HPO

Algorithms are complex, depend on a multidimensional often hierarchical space of
hyperparameters. BUT complex HPOs have low adoption among practitioners.
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Importance of HPO

Algorithms are complex, depend on a multidimensional often hierarchical space of
hyperparameters. BUT complex HPOs have low adoption among practitioners.

We need simple optimization methods providing
anytime performance
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Automatization Specialization

AutoML + HPO: Defgults based on user

Random Search experience
Bayesian Optimization Meta-learning
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earning

Practical challenges

- shared variables: cognitive
assessments in prediction of

£ Meta-test Alzheimer's disease;

= reart | - related targets: mortality prediction, as
4_, 1) 1) ]

s Aredictiol endpoints dre often considered with

differently defined short- and
long-term mortality;

- out-of-time data: updating the set of
observations and train the model
anew,
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Domain knowledge

Consolidated
learning

Automatization Specialization

Meta-learning
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metaMIMIC - first benchmark

MIMIC is single-center database comprising information relating to patients

admitted to intensive care units (ICU)

Targets Freguency

Hypertensive disease 59.8%

I‘ ”ﬁ” @) Disorders of lipoid metabolism 40.3%

5 KL [[e= | .

W 1 Anemia 35.9%

na + Ischemic heart disease 32.8%

Diabetes 25.35%
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metaMIMIC - scenarios

metaMIMIC.csv

All of 34925 observations

All of 172 predictors 1 of 12 targets
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metaMIMIC - first benchmark
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metaMIMIC - experiments ., ot

good
do-
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Results

Number of hyperparameter sets shared between tasks
(among the best 50 sets)
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Tasks based on MIMIC-IV
(different observations)
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Tasks based on MIMIC-IV
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Mean number of hyperparameter sets shared between tasks
(among the best 10 sets)

Results

MIMIC IV half 1
no. predictors:
50 20 10

100

The definition-based (domain)
similarity of tasks is positively
related to hyperparameters'

transferability between them.
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anytime performance
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Consolidated learning:

@ does not require any definitions of similarity based on

statistical characteristics

@ easy to implement in any domain, benefits from
specification of problems

@ provides anytime performance

@ Increases trust in meta-learning
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Extension of CL with semantic similarity

1.Unrelated
datasets
GOSSIS )
2. SeFNet - Semantic Feature Net

metaMIMIC Soans | metaMIMIC
X 3. Terms similarity
Dataset similarity

Mean Blood  Systolic Mood  Diastolic Blood
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@ SeFNet - Healthcare Home Datasets Upload

Semantic Feature Net - Healthcare

Welcome to Semantic Feature Net - Healthcare, a comprehensive collection of tabular
datasets related to the applications of machine learning in predictive tasks for
healthcare. All datasets have been structured considering the semantic meaning of their
features with concepts derived from the SNOMED-CT ontology. Each dataset has an
associated set of features' annotations, which can be used for sharing valuable insights
between diverse predictive tasks.

dataset category instances Ffeatures annotations annotations %
Cardiovascular Study Survey 4238 16 15 94%
Diagnosis of COVID-19 EHR 603 19 18 95%

(Subset)

Diabetes Health Indicators Survey 253680 22 21 95%
Diabetes 130 US EHR 101766 49 38 78%
GOSSIS-1-elCU Model Ready EHR 131051 68 60 88%
Stroke Prediction Survey 5110 1 11 100%
Heart Disease Indicators Survey 253680 22 21 95%
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