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science of ML should be

4. Conclusions

The results reported in this paper show that the predictive accuracy of
induced decision trees, both pruned and unpruned, is not sensitive to the
goodness of split measure. This confirms Breiman et al.’s (1984) results. All of
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3.2 Data sets

The experiments drew on four data sets, three from natural domains and
one constructed artificially.

Profiles of B.A. Business Studies degree students (BABS). These data re-
late various attributes of each student, on entry to the course, to the final
class of degree achieved. There are 186 observations with seven attributes
— age (years), type of entry qualification (A-level,> BTEC Ordinary National
Diploma, or some other), sex (male/female), number of O-levels, number of
points at A-level (0-20), grade of maths O-level (A, B, C, FAIL), and full-time
employment before the course (yes/no). There are four possible classes of de-
gree ~ first, upper second, lower second, or third. Three of the attributes are
integer and four symbolic. There is no known noise, but many other factors
affecting the results have not been (and probably could not be) measured,

4. Conclusions giving high residual variation. This is an example of a prediction task.

The recurrence of breast cancer (Cancer). These data, containing 286 exam-
ples, are derived from those used in Bratko and Kononenko (1986) and concern

The results reported in this Pi¢ the recurrence of breast cancer . There are two classes (recur or not recur)

: * . and nine attributes, of which four are integer. These include age, tumor size,
Hldllced demsmn trees ’ bOth Prul ;ymber of nodes, malignant (yes/no), age of menopause (< 60, > 60, not

goodness of Spht measure. This coQ occurred), breast (left, right), radiation treatment (yes/no), and quadrant of
L IR IR .t Viiog Dreast (left, right, top, bottom, center). There are both missing data and
oot hasn e ama amaTa anmaT  residual variation. It is another example of a prediction task.

Machine Learning 3: 319-342, 1989 Classifying types of Iris (Iris). Kendall and Stewart (1976, p. 331) use these
© 1989 Kluwer Academic Publishers -~ Manufactured in The Netherlands data as a test of discriminant analysis. There are 150 examples of three dif-
ferent varieties of Iris, with roughly equal numbers of each. The four integer
attributes are measurements such as petal length and petal width, from which
the examples can be classified. There is little noise or residual variation.

An Empirical COI,n,p arison of Selec.tmn Recognizing LCD display digits (Digits). This is an artificial domain suggested
Measures for Decision-Tree Induction by Breiman et al. (1984). A digit in a calculator display consists of seven
lines, each of which may be on or off. Thus, there are ten classes (one for
each digit) and seven binary-valued attributes (one for each line). Residual

JOHN MINGERS (BSRCD@CU.WARWICK.AC.UK) variation is introduced by assuming that a malfunction leads to a 10% chance
School of Industrial and Business Studies, University of Warwick, of a line being incorrect. Such errors affect the attributes but not the class.
Coventry CV4 TAL, UK. Note that the chance of an example being completely correct is 0.9" = 0.48.

Three hundred cases were randomly generated. This is another example of a
classification task.
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UCI A
Machine Learning Repository ', @ p e n M I_

Center for Machine Learning and Intelligent Systems . .‘ .... o

We currently maintain 160 data sets as a service to the machine learning community.

Machine learning, better, together
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classifiers available today. We use 121 data sets, which represent the whole UCI data
base (excluding the large-scale problems) and other own real problems, in order to achieve
significant conclusions about the classifier behavior, not dependent on the data set col-
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classifiers available today. We use 121 data sets, which represent the whole UCI data
base (excluding the large-scale problems) and other own real problems, in order to achieve
significant conclusions about the classifier behavior, not dependent on the data set col-
lection. The classifiers most likely to be the bests are the random forest (RF)
versions, the best of which (implemented in R and accessed via caret) achieves 94.1% of
the maximum accuracy overcoming 90% in the 84.3% of the data sets. However, the dif-
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4.1 Are Commercial Tool Developers Overfitting the UCI?

In Section 3.7 we observed that C5.0 rules, C5.0 tree, MLP and RBFN seem to
be overfitting the UCI-R. However, the Kolmogorov-Smirnov did not detect any

Soares, C. (2003). Is the UCI repository useful for data mining? In F. M. Pires & S. Abreu (Eds.), Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2902, pp. 209-223). Springer-Verlag.
https://doi.org/10.1007/978-3-540-24580-3_28
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metalearning for [PORTO
algorithm selection (2/2) PP Uhiersionot oo oo

> 1ris
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1 5.1 1.4 0.2 setosa
N
ﬂ . — 4.9 1.4 0. setosa
Vs 3 4.7 1.3 0.2 setosa
V4 4 4.6 1.5 0.2 setosa
(@] , - < <a - a - P,
my [} 1
et 4
problem 2. /
m/ n.examples n.attributes n.classes def.accuracy meta.target
A I imports_38! 205 25 ] 0.3268293 oT
7 "'r—c / Lionosobas 354 3 Bl 410256, LD
iris .
Ve = A [ ) 150 4 0 0.3333333 ot |
Vs < 7 RVe-Rp 3196 30 0 0.522215 o7
V4 E I lung-cancer 32 56 [} 0.4062500 LR
7 N T
4 7 >
s, metafeajure 1
'
z /
1

Brazdil P, Soares C, Costa J. Ranking Learning Algorithms: Using {IBL} and Meta-Learning
on Accuracy and Time Results. Machine Learning. 2003;50(3):251-277.
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metaknowledge!

;:‘ Machine Learning, 54, 275-312, 2004
' (© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

On Data and Algorithms: Understanding
Inductive Performance

ALEXANDROS KALOUSIS kalousis @cui.unige.ch
University of Geneva, Computer Science Department, 24, rue du General Dufour, CH-1211 Geneva 4, Switzerland

JOAO GAMA jgama@liacc.up.pt
LIACC, FEP—University of Porto, Rua Campo Alegre 823, 4150 Porto, Portugal

MELANIE HILARIO hilario @cui.unige.ch
University of Geneva, Computer Science Department, 24, rue du General Dufour, CH-1211 Geneva 4, Switzerland

For the High Error Correlation group the Class Entropy is strongly peaked and con-
centrated to the low values of the scale compared to a more uniform distribution within
the Low Error Correlation group. The low values of CE can be due to two factors, large
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Mufioz, M. A., Villanova, L., Baatar, D., & Smith-Miles, K. (2018). Instance spaces for machine learning
classification. Machine Learning, 107(1), 109-147. https://doi.org/10.1007/s10994-017-5629-5
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classifiers available today. We use 121 data séts, which represent the whole UCI data
base (excluding the large-scale problems) and other own real problems, in order to achieve
significant conclusions about the classifier behavior, not dependent on the data set col-
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data?

Mach Learn (2018) 107:109-147
https://doi.org/10.1007/s10994-017-5629-5

Instance spaces for machine learning classification

Mario A. Mufioz!® - Laura Villanova! .

Davaatseren Baatar! . Kate Smith-Miles!

To generate instances with a desired target vector of features, f7, we tune a Gaus-
sian Mixture Model (GMM) until the Mean Squared Error (MSE) between fr and
the feature vector of a sample from the GMM, fg, is zero, assuming that the GMM
is sampled using a fixed seed to guarantee some level of repeatability. Let us define
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* the promise of (semi-)synthetic data

— algorithms

e data manipulation
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* datasetoids
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existing data?

Information Sciences 261 (2014) 237-262

Contents lists available at ScienceDirect

. . 5.3. Comparison with an artificial sample
Informatlon SClences In order to verify whether the UCI repository could be enhanced with an artificial sample of problems, we used a set of
80,000 artificial data sets, whose details are explained below.

These data sets were designed to analyse whether they could cover the regions of the complexity measurement space
where the UCI has not any representative. The extrinsic characteristics can be easily controlled in an artificial sample, as well
as the introduction of noise or missing values. What represents a major challenge is to obtain a collection of data sets whose
target concepts are spread across a wide range of geometrical complexities. For this purpose, we relied on the aforemen-
tioned data complexity measures and designed an algorithm which was able to synthetically generate data satisfying a given
constraint of complexity. This was achieved by means of an evolutionary multi-objective algorithm—Non-dominated Sorting

journal homepage: www.elsevier.com/locate/ins

+- 1 1 1 Genetic Algorithm II (NSGA-II) [6]—, which was configured to simultaneously optimise a set of complexity measures, such as
Towards UCI ° A mlndeI repOSItory dESlgn the maximisation of N1 and the minimisation of F1. The synthesising approach finds the vector t=[z, ..., z]", 2 <k<n,

L. . . . where n is the total number of instances and z; is instance i, (t is a sub-set of [z, ..., z,]"), which optimises (minimises or
Nuria Macia *, Ester Bernad6-Mansilla maximises) f{t) = [F1v(t), F1(t), F2(t), F3(t), FA(t), L1(t), L2(t), L3(t), N1(t), N2(t), N3(t), N4(t), T1(t), T2(t)] and subject to

the following constraints: (1) k > Kin, Where kpn is the minimum number of instances specified by the user, (2) class imbal-
Grup de Recerca en Sistemes Intel-ligents, La Salle — Universitat Ramon Llull, 08022 Barcelona, Spain ance specified by the user, and (3) no duplicate instances.
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reconstruction score
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. Oliveira E Silva, C. Soares, |. Sousa and R. Ghani (2023), Systematic analysis of the
impact of label noise correction on ML Fairness, accepted for publication at [/CAl 2023
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Hilario, Kalousis. Quantifying the Resilience of Inductive Classification Algorithms. In Proc. 4™ European
Conf. on Principles of Data Mining and Knowledge Discovery. Springer-Verlag; 2000:106-115.
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algorithm behavior

T To Ts Tn2 Th-1 Tn
N NN [N [
Space D Dy } Dy
D1 D2 D3 Turning point D”'3 D""2 D""1
Algorithm A better Algorithm B better
MF1 MF1 MF1 MF1 MF1 MF1
MF2 MF2 MF2 MF2 MF2 MF2
MF3 MF3 MF3 MF3 MF3 MF3
Space F MFa MF4 MF4 MFa MF4 MF4
MF# MF¢ MF¢ MF¢ MF# MF¢
P P P P P1 :
P2 P2 2 P2 P2 F
Space P Ps P3 Ps Ps Ps
Pp Pp Pp Pp Pp P

Correia, A., Soares, C., & Jorge, A. (2019). Dataset Morphing to Analyze the Performance of Collaborative Filtering.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics): Vol. 11828 LNAI (pp. 29-39). https://doi.org/10.1007/978-3-030:33778-0_3
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algorithm behavior

original dataset datasetoid 1 datasetoid 2

independent attributes target independent attributes target independent attributes target

Soares, C. (2009). UCI++: Improved Support for Algorithm Selection Using Datasetoids. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics): Vol. 5476 LNAI (pp. 499-506). Springer-Verlag. https://doi.org/10.1007/978-3-642-01307-2_46
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Luis Cunha, Carlos Soares, André Restivo, and Luis F. Teixeira. 2023. GASTeN: Generative Adversarial Stress Test Networks. In Advances in Intelligent Data Analysis
XXI: 21st International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve, Belgium, April 12-14, 2023, Proceedings. Springer-Verlag, Berlin,
Heidelberg, 91-102. https://doi.org/10.1007/978-3-031-30047-9_8
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e |abel correction methods
— with |. Oliveira e Silva, I. Sousa, R. Ghani

e time series forecasting and anomaly detection

— with R. Andrade, N. Vasconcelos, Y. Baghoussi, V.
Cerqueira, J. Mendes-Moreira

* hierarchical time series forecasting
— with L. Roque, L. Torgo
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* time series forecasting
— with M. Santos, A. Carvalho

* recommender systems

— with A. Correia and A. Jorge
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e classification
— with G. Freire

* regression
— with L. Viegas, G. Freire

* graphs
— with R. Andrade, P. Ribeiro
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 CV

— with L. Cunha, |I. Gomes, L.F. Teixeira, A. Restivo

* NLP
— with D. Préda, I. Gomes, H.L. Cardoso

* time series forecasting

— with A. Monteiro, V. Ribeiro, Y. Baghoussi, V.
Cerqueira, A.P. Serra

* hierarchical time series forecasting
— with L. Roque, L. Torgo
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