Identification of Logical Fallacies in Natural Language Arguments

FILIP ILIEVSKI http://ilievski.info
VU Amsterdam / University of Southern California

Vishnu Priya

Darshan Deshpande

Himanshu Rawlani

Hông-Ân Sandlin

Alain Mermoud

What are logical fallacies?

Logical fallacy: a mistake in the reasoning from one proposition to the next, causing a faulty argument [AlMossawi, 2014]

A broad category of violations of argumentation norms, including structure, consistency, clarity, order, relevance, & completeness

Can be formal (structure) or informal (content)

What are informal fallacies?

A flaw in the substance (content / context) of an argument

Example: ad hominem (attacking the opponent's character or personal traits)

I don't care what your arguments are; you are using Mickey Mouse tactics. The arguments you give are simply tacky.

Appear to be misleadingly correct, hence seductive and persuasive

There is definitely a link
between depression and
drinking alcoholic drinks. I
read about it from
Wikipedia

-Wikipedia?
-Causality of
depression and
alcoholic drinks?
-Fallacy types?

• •

There is definitely a link
between depression and
drinking alcoholic drinks. I
read about it from
Wikipedia

-Wikipedia?
-Causality of
depression and
alcoholic drinks?
-Fallacy types?

There is definitely a link between depression and drinking alcoholic drinks. I read about it from Wikipedia

Lack of sufficient evidence to support the claim!

False Causality
Ad Hominem
Fallacy of Logic
Circular Reasoning
Fallacy of Relevance
False Dilemma
Fallacy of Credibility

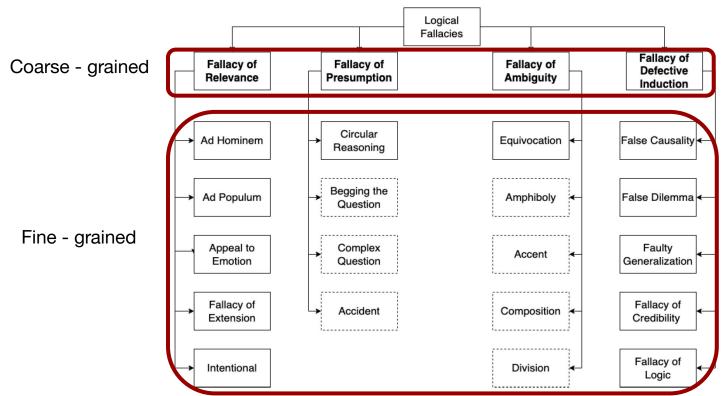
Ad Populum
Equivocation
Appeal to Emotion
Fallacy of Extension
Intentional
Faulty Generalization

Why automatic fallacy identification?

Fallacies have long been discussed in philosophy, from Aristotle to Copi and Barker

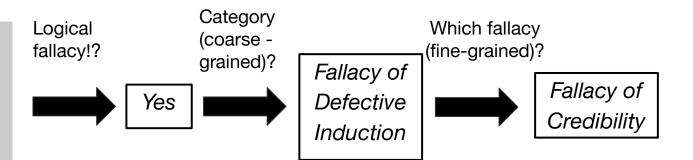
Identifying informal fallacies is a subtle task, requires flexible abstraction of information - many violation types and classes!

Almost no computational work on informal fallacy identification

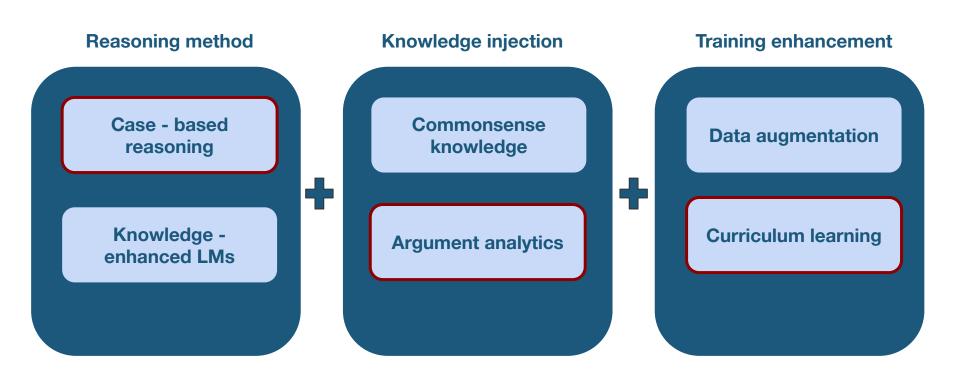

LMs struggle with this task [Jin et al., 2022]

Research goal:

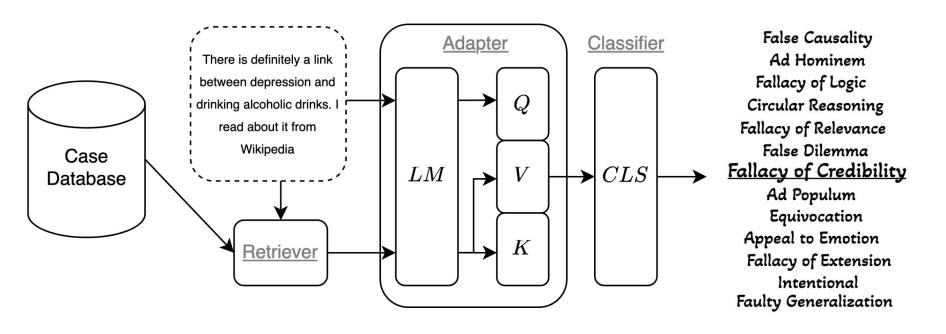
Can we build NeSy methods for robust and explainable identification of logical


fallacies in natural language arguments?

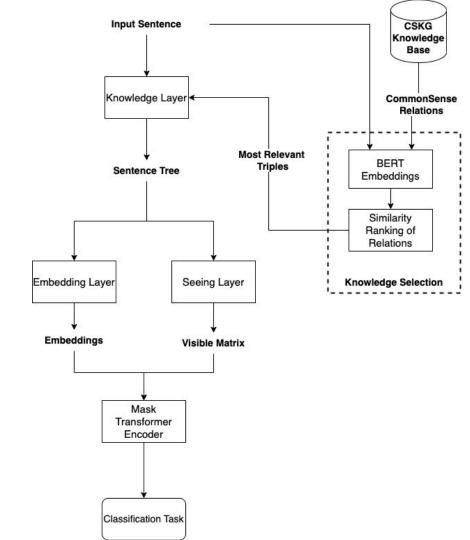
Our taxonomy of logical fallacies

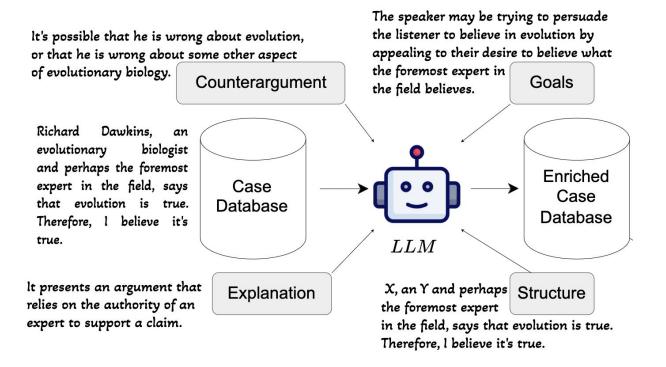


Task definition

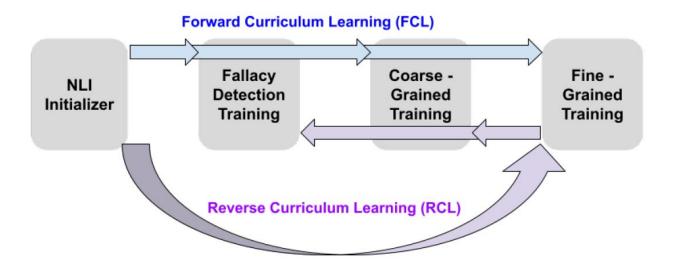

There is definitely a
link between
depression and
alcoholic drinks. I
read it on Wikipedia.

NeSy framework for fallacy identification


Instance-based reasoning with LMs


Prototype-based reasoning

Prototype classifier network h Fully Prototype Distance Softmax connected Mask m layer p layer s layer w Encoder **Transformed** network f input f(x)Output of prototype Input classifier text x network h(f(x))pm


Knowledge enhanced LM reasoner (K-BERT with commonsense knowledge)

Knowledge injection: Argument analytics

Training enhancement with curriculum learning

Instance-based reasoning outperforms the other methods

LOGIC (in dom						LOGIC Climate (out of doma			
Туре	Model	Acc	Р	R	F1	Acc	Р	R	F1
Random	/	0.076	0.094	0.076	0.079	0.077	0.124	0.077	0.085
Frequency	/	0.094	0.094	0.094	0.093	0.079	0.120	0.079	0.080
NLI	Electra	0.602	0.614	0.602	0.599 ± 0.02	0.229	0.276	0.229	0.217 ± 0.01
IBR	Electra	0.631	0.638	0.631	0.627 ±0.01	0.254	0.281	0.254	0.245 ±0.01
PBR	Electra	0.574	0.600	0.574	0.574 ± 0.01	0.199	0.330	0.199	0.166 ± 0.01
KI	BERT	0.488	0.478	0.488	0.482 ± 0.03	0.106	0.092	0.106	0.090 ± 0.02

Out-of-domain performance still much lower than in-domain

Argument analytics improves instance-based reasoning performance

			LOGIC		LOGIC Climate			
Model	Representation	P	R	F1	P	R	F1	
ELECTRA	Text	0.655	0.634	0.635	0.317	0.242	0.242	
	Counterarg.	0.663	0.664	0.657	0.355	0.254	0.270	
	Goals	0.646	0.622	0.621	0.376	0.217	0.222	
	Structure	0.634	0.625	0.618	0.375	0.254	0.269	
	Explanations	0.605	0.580	0.578	0.314	0.242	0.237	
RoBERTa	Text	0.633	0.613	0.619	0.343	0.236	0.251	
	Counterarg.	0.624	0.613	0.615	0.367	0.198	0.216	
	Goals	0.632	0.613	0.619	0.351	0.242	0.263	
	Structure	0.631	0.619	0.619	0.379	0.248	0.245	
	Explanations	0.575	0.558	0.559	0.359	0.192	0.181	
BERT	Text	0.595	0.604	0.596	0.311	0.192	0.204	
	Counterarg.	0.607	0.613	0.603	0.342	0.217	0.228	
	Goals	0.598	0.607	0.596	0.310	0.204	0.203	
	Structure	0.613	0.616	0.611	0.359	0.204	0.200	
	Explanations	0.540	0.531	0.532	0.274	0.217	0.190	

Sourati Z, Ilievski F, Sandlin HÂ, Mermoud A. Case-based reasoning with language models for classification of logical fallacies. 2023.

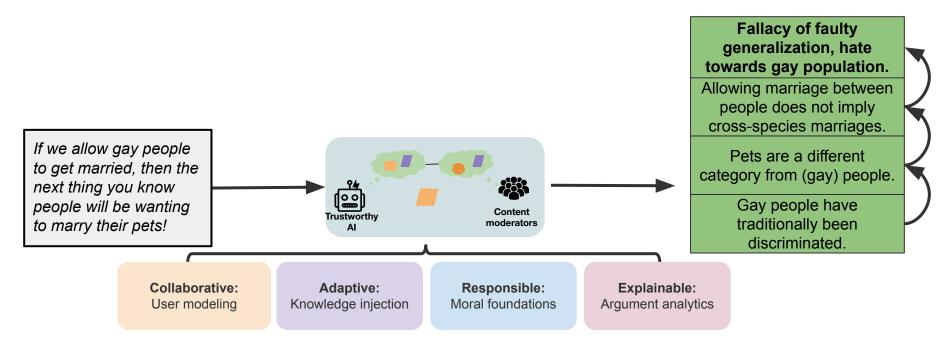
Curriculum learning helps coarseand fine-grained classification

		Binary (BIG Bench)			Coarse-grained			Fine-grained		
Model	CL Type	Р	R	F1	Р	R	F1	Р	R	F1
BERT	-	0.848	0.845	0.845 ±0.01	0.714	0.718	0.717 ± 0.04	0.583	0.583	0.583 +0.01
	FCL	-	18-	-	0.717	0.727	0.721 ± 0.03	0.613	0.586	0.584 ± 0.02
	RCL	0.826	0.827	0.826 ± 0.00	0.783	0.779	0.778 ±0.02	-	-	-
DeBERTa	-	0.988	0.988	0.988 ±0.00	0.746	0.740	0.741 ± 0.03	0.607	0.593	0.592 ± 0.02
	FCL		-		0.748	0.758	0.751 ± 0.02	0.632	0.604	0.608 ±0.01
	RCL	0.908	0.892	0.889 ± 0.05	0.779	0.785	0.780 ±0.02	-	-	-
DistilBERT		0.848	0.847	0.847 ±0.01	0.004	0.695	0.663 ±0.02	0.508	0.513	0.505 + 0.02
	FCL	=	-	-	0.703	0.713	0.706 ± 0.02	0.550	0.520	0.525 ± 0.03
	RCL	0.844	0.842	0.841 <u>+</u> 0.01	0.704	0.719	0.711 ±0.03	-	-	-
RoBERTa	-	0.983	0.983	0.983 ±0.01	0.719	0.714	0.716 ± 0.01	0.560	0.545	0.545 ± 0.02
	FCL	-	-	-	0.710	0.713	0.706 ± 0.02	0.578	0.569	0.565 ± 0.02
	RCL	0.900	0.899	0.899 ± 0.01	0.736	0.741	0.732 ± 0.01	-	-	-
Electra	-	0.995	0.995	0.995 ± 0.00	0.765	0.767	0.764 ± 0.01	0.614	0.602	0.599 ± 0.02
	FCL	-	-	I -	0.711	0.722	0.716 ± 0.03	0.624	0.613	0.610 ± 0.04
	RCL	0.957	0.957	0.957 ± 0.01	0.779	0.782	0.775 ±0.03	-	-	-

Explaining by example

Class	Input Sentence	Similar Cases (IBR)	Prototypical Cases (PBR)
Ad Populum	Everyone is going to get the new smart phone when it comes out this weekend. Why aren't you?	 (1) I'm gonna get an iPhone because everybody else has an iPhone and they're cool. (2) Everyone wants the iPhone 11 because it's the best phone on the market! 	(1) Everyone seems to support the changes in the vacation policy, and if everyone likes them, they must be good. (2) Everyone is buying the new iPhone that's coming out this weekend. You have to buy it too.
Faulty Generalization	Everyone knows that teenagers are lazy	 (1) If we let teenagers wear whatever they want to school, they will no longer respect the rules and academic performance will decline. (2) If we don't teach teens to work harder, the human race is doomed 	(1) If we allow a housing development to be built on Sunny Lake, a resort will come next, and soon we won't have any wilderness left! (2) Michael is part of the Jackson Five. Without Tito and company, he will never make it.

Bold means same class as the ground truth


Takeaways

Logical fallacy identification is an understudied Al challenge, while popular in social sciences Instance-based reasoning, curriculum learning, and argument analytics improve the robustness of LMs Further research on NeSy methods needed to build robust and explainable models

Thanks!

http://ilievski.info f.ilievski@vu.nl

Towards comprehensive argument analytics

