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Openml.org
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Datasets

Data (ARFF) uploaded or referenced, versioned
Analysed, characterized, organized on line
Indexed based on name, meta-features, tags, etc.
Support for other data formats (on request)
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Tasks

Data alone does not define an experiment

Tasks contain: data, target attribute, goals, procedures

Readable by tools, automates experimentation

Real time ‘leaderboard’ and overview
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Tasks

Various Task Types:

Supervised Classification

Supervised Regression

Learning Curve Classification (time intensive)

Data Stream Classification (on line learning)

Survival Analysis

Clustering (Work in Progress)

Machine Learning Challenge

Easily extendable to more ..
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Flows (algorithms)

Run locally, auto-registered by tools

Integrations + APIs (REST, Java, R, Python, . . . )
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Flows (algorithms)

Run locally, auto-registered by tools

Integrations + APIs (REST, Java, R, Python, . . . )

1 import openml
2 from s k l e a r n import ensemble
3

4 t a s k = openml . t a s k s . g e t t a s k (3954)
5 c l f = ensemble . R andomFo r e s tC l a s s i f i e r ( )
6 run = openml . runs . r un mode l on t a s k ( task , c l f )
7 r e s u l t = run . p u b l i s h ( )
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Runs

Flow uploads predictions
Predictions are evaluated on OpenML
Reproducible, linked to data, flows and researcher
Contains:

predictions
hyperparameter settings
model information
evaluation measures
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Runs

Answer basic questions about performance of algorithms to study . . .

Computation is done client side

The results (serialized model, predictions) are uploaded to
OpenML

OpenML evaluates the results and calculates default evaluation
measures

Users can calculate custom evaluation measures and share them
on OpenML
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Studies

Bundles Data, Flows,
Tasks and Runs

Link attached to
publication

(Work in Progress):
attach a notebook
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Intermediate Summary

OpenML . . .

offers an eco-system to make Machine Learning experiments
re-useable to other scientists

is integrated in various programming languages and ML
toolboxes, including Scikit-learn, Weka, . . .

has an active community; community meetings take place twice
a year

has more than 20,000 unique monthly users (and growing)

Metalearning: Advanced Topics — September 23rd, 2022 11 / 26



Projects

Several projects done with OpenML:

OpenML Benchmark Suites [Bischl et al., 2021] - not today

Hyperparameter Importance [van Rijn and Hutter, 2018]

Myth Busting Urban Legends [Post et al., 2016, Strang et al.,
2018] - if time allows

(Learning good defaults) [Pfisterer et al., 2021] - not today
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Hyperparameter Importance
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Hyperparameter Optimization

data pre-
processor

feature
pre-processor

classifier

ML Framework

5

classifier #λ
Adaboost 4
Bernoulli Naive Bayes 2
Decision Tree 4
Extra Trees 5
Gradient Boosting 6
k-NN 3
LDA 4
. . .
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Hyperparameter Importance

Experimental Setting by van Rijn and Hutter [2018]:

All datasets from the OpenML-100 [Bischl et al., 2021]

Four classifiers from scikit-learn (Random Forest, Adaboost and
SVM with various kernels)

Include results with at least 200 runs (try to generate if not
enough)

Functional ANOVA [Sobol, 1993, Hutter et al., 2014]

Limitation: No conditional hyperparameters
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Hyperparameter Importance
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Hyperparameter Importance
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Hyperparameter Importance
Initial conclusions from a study by van Rijn and Hutter [2018]:

Functional ANOVA is a consistent tool for Hyperparameter
Importance Analysis

Obtained expected results (gamma and complexity) and new
insights (Random Forest, Adaboost)

Imputation of Missing Values

Inferring priors leads to statistically significant better
Hyperparameter Optimization results (Random Search and
Hyperband)

Video: https://www.youtube.com/watch?v=mS4vL7_rSWQ
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Myth Busting for Data Mining

Papers are generally build upon claims that are not well
grounded, e.g.,

“We performed data transformation X because it is common
practise.”
“We set hyperparameter Y to value Z because the authors
recommended these values.”

We can empirically analyze the validity of these claims on the
meta-data from OpenML
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Effect of Feature Selection

Experimental Setting by Post et al. [2016]:

400 binary classification datasets from OpenML

12 algorithms from Weka

Correlation-based Feature Subset Selection

We added runs that not existed on OpenML

Recorded Area Under the ROC curve

Limitation: Hyperparameter Optimization
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Effect of Feature Selection
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear

ease of tuning

+ -

interpretability

+ -

fit risk

underfit overfit

performance

- +
Tree Decision Stump Decision Tree
SVM Linear Kernel Gaussian Kernel
Neural Network Perceptron MLP
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Linear vs. Non-Linear

SVM

Neural Networks
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Linear vs. Non-Linear

SVM Neural Networks
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Effect of Feature Selection

Conclusions:

Most results as expected:

Feature selection is often beneficial for the classifiers for which we
expect it to be: k-NN and Naive Bayes
Non-linear classifiers exclusively better than linear classifier

Whether or not to use feature selection can be learned (see
paper)

Low amount of datasets on which feature selection significantly
effects performance potentially indicates data bias

Realization: Limitation of OpenML100
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