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Openml.org

OpenM L

Machine learning, better, together

19901

data sets

Find or add data to analyse Download or create scientific Find or add data analysis flows Upload and explore all results
online.
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Datasets

m Data (ARFF) uploaded or referenced, versioned
m Analysed, characterized, organized on line

m Indexed based on name, meta-features, tags, etc.
m Support for other data formats (on request)

26 features 72 properties
symboling (target)  nominal 6 unique values LA il DefaultAccuracy 033
0 missing 2 l 2w
L |
52 a0 12 Ll NumberofClasses 7
normalizecosses  numeric 51w ks il NumberofFsstures 2
il NumberOfinstances 205
make nominal 22 unique values
Omissing N bl NumberOfMissingVal.. 5
T
Ll NumberOfNumericFe. s
Ll NumberOfSymbolicF... 10
il ClassCount 7
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O (learn [ comomzens ]

sklearn.datasets.fetch_openml

scikit-learn v0.21.devd
Other versions

sklearn.datasets. fetch_openml (name=None, version="active’, data_id=None, data_home=None,
target_column=default-target’, cache=True, return_X_y=False) [source]

cite us it

sklearn.datasets .felch_open
-°P Fetch dataset from openml by name or dataset id

ml

Examples using

Datasets are uniquely identified by either an integer ID or by a combination of name and version (i.e. there might be
sklearn.datasets. fetch_openn

multiple versions of the ‘iris’ dataset). Please give either name or data_id (not both). In case a name is given, a version
«can also be provided.

Read more in the User Guide
Note: EXPERIMENTAL

The API is experimental in version 0.20 (particularly the return value structure), and might have small backward-
incompatible changes in future releases.

Parameters: name : str or None

String identifier of the dataset. Note that OpenML can have multiple datasets with the same
name.

version : integer or ‘active’, default="active”
Version of the dataset. Can only be provided if also name is given. If ‘active’ the oldest version
that's still active is used. Since there may be more than one active version of a dataset, and those
versions may fundamentally be different from ane another, setting an exact version is highly
recommended.

data_id : int or None
OpenML ID of the dataset. The most specific way of retrieving a dataset. If data_id is not given,
name (and potential version) are used to obtain a dataset.
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m Data alone does not define an experiment
m Tasks contain: data, target attribute, goals, procedures
m Readable by tools, automates experimentation

m Real time ‘leaderboard’ and overview

Contributions over time
every point is a run, click for details
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Various Task Types:

m Supervised Classification

Supervised Regression

Learning Curve Classification (time intensive)
Data Stream Classification (on line learning)
Survival Analysis

[
[

[

m Clustering (Work in Progress)
m Machine Learning Challenge
[

Easily extendable to more ..
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% Flows (algorithms)

m Run locally, auto-registered by tools
m Integrations + APIs (REST, Java, R, Python, ...)

2 ROJ
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% Flows (algorithms)

m Run locally, auto-registered by tools
m Integrations + APIs (REST, Java, R, Python,

A

Q@)))

import openml

from sklearn import ensemble

task = openml.tasks.get_task(3954)

clf = ensemble. RandomForestClassifier ()
run = openml.runs.run_model_on_task(task,
result = run.publish ()

clf)
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% Flows (algorithms)

m Run locally, auto-registered by tools
m Integrations + APIs (REST, Java, R, Python, ...)

& ROD
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m Flow uploads predictions
m Predictions are evaluated on OpenML
m Reproducible, linked to data, flows and researcher
m Contains:
m predictions
m hyperparameter settings
m model information
m evaluation measures
RESU“ f”es Area under ROC curve
° Description o 0.7007 +00028
XML file describing the run, including user-defined evaluation measures.
Per class
° Model readable model N .
A human-readable description of the model that was built 07007 | 07007
Model serialized model
A serialized description of the model that can be read by the tool that generated it. Cross-validation details (10-fold Crossvalidation)
a Predictions arff 5 Jms e o . . o . -
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Answer basic questions about performance of algorithms to study ...

m Computation is done client side

m The results (serialized model, predictions) are uploaded to
OpenML

m OpenML evaluates the results and calculates default evaluation
measures

m Users can calculate custom evaluation measures and share them
on OpenML
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m Bundles Data, Flows,
Tasks and Runs

m Link attached to
publication

m (Work in Progress):
attach a notebook
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Intermediate Summary

OpenML ...

m offers an eco-system to make Machine Learning experiments
re-useable to other scientists

m is integrated in various programming languages and ML
toolboxes, including Scikit-learn, Weka, ...

m has an active community; community meetings take place twice
a year

m has more than 20,000 unique monthly users (and growing)
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Projects

Several projects done with OpenML:
m OpenML Benchmark Suites [Bischl et al., 2021] - not today
m Hyperparameter Importance [van Rijn and Hutter, 2018]

m Myth Busting Urban Legends [Post et al., 2016, Strang et al.,
2018] - if time allows

m (Learning good defaults) [Pfisterer et al., 2021] - not today
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Hyperparameter Optimization

data pre- feature —
5 [processor}{pre—processor 5

ML Framework

classifier FHA
Adaboost 4
Bernoulli Naive Bayes 2
Decision Tree 4
Extra Trees 5
Gradient Boosting 6
k-NN 3
LDA 4
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Hyperparameter Importance

Experimental Setting by van Rijn and Hutter [2018]:
m All datasets from the OpenML-100 [Bischl et al., 2021]

m Four classifiers from scikit-learn (Random Forest, Adaboost and
SVM with various kernels)

m Include results with at least 200 runs (try to generate if not
enough)

m Functional ANOVA [Sobol, 1993, Hutter et al., 2014]

m Limitation: No conditional hyperparameters
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Hyperparameter Importance

performance

- -4
gamma (log)
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Hyperparameter Importance

performance
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Hyperparameter Importance

performance
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Hyperparameter Importance

task_name
0.25] —— breast-w
—— phoneme
—— banknote-authentication
— wilt
.2 :
0201 diabetes

—l -
— -
Hilk
— 17 -
— . -
—-
—
iy
HEl-+

[Sharma et al., 2019]

[Moussa et al., 2022]

Metalearning: Advanced Topics — September 23rd, 2022




Universiteit
Leiden

Hyperparameter Importance
Initial conclusions from a study by van Rijn and Hutter [2018]:

m Functional ANOVA is a consistent tool for Hyperparameter
Importance Analysis

m Obtained expected results (gamma and complexity) and new
insights (Random Forest, Adaboost)

m Imputation of Missing Values

m Inferring priors leads to statistically significant better
Hyperparameter Optimization results (Random Search and
Hyperband)

m Video: https://www.youtube.com/watch?v=mS4vL7_rSWQ

Find:
1) important parameters )
2) good. priors
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Myth Busting for Data Mining

m Papers are generally build upon claims that are not well
grounded, e.g.,
m “We performed data transformation X because it is common
practise.”
m “We set hyperparameter Y to value Z because the authors
recommended these values.”

m We can empirically analyze the validity of these claims on the
meta-data from OpenML
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Effect of Feature Selection

Experimental Setting by Post et al. [2016]:
m 400 binary classification datasets from OpenML

12 algorithms from Weka

m Correlation-based Feature Subset Selection
m We added runs that not existed on OpenML
m Recorded Area Under the ROC curve

n

Limitation: Hyperparameter Optimization
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Effect of Feature Selection

Better
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Worse
wte
16 64 256 1024 4096 16384
Number Of Features
Better
Equal
Worse
a -
16 64 256 1024 4096 16384
Number Of Features
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8192
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Number Of Features
Naive Bayes
° K Better
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear

ease of tuning
interpretability
fit risk
performance
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear
ease of tuning  + -
interpretability
fit risk
performance
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear
ease of tuning  + -
interpretability  + -
fit risk
performance
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear
ease of tuning  + -
interpretability  + -
fit risk underfit overfit
performance
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear

ease of tuning  + -
interpretability  + -

fit risk underfit overfit
performance - +
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear
ease of tuning  + R
interpretability  + -

fit risk underfit overfit
performance - +
Tree Decision Stump  Decision Tree
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear
ease of tuning  + R
interpretability  + -

fit risk underfit overfit
performance - +

Tree Decision Stump  Decision Tree
SVM Linear Kernel Gaussian Kernel
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Linear vs. Non-linear

Reoccuring topic in literature, see [Strang et al., 2018] for several
examples

Linear Non-linear
ease of tuning  + R
interpretability  + -

fit risk underfit overfit
performance - +

Tree Decision Stump  Decision Tree
SVM Linear Kernel Gaussian Kernel
Neural Network Perceptron MLP
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Linear vs. Non-Linear
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Number of features
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Effect of Feature Selection

Conclusions:

m Most results as expected:
m Feature selection is often beneficial for the classifiers for which we
expect it to be: k-NN and Naive Bayes
m Non-linear classifiers exclusively better than linear classifier
m Whether or not to use feature selection can be learned (see
paper)
m Low amount of datasets on which feature selection significantly
effects performance potentially indicates data bias

m Realization: Limitation of OpenML100
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