
Meta-Learning for Few-Shot
Learning

Henry Gouk

Overview

● Transfer Learning

● Meta-Learning a Shared Feature Extractor

● Gradient-Based Meta-Learning

● Bayesian Meta-Learning

2

Deep Learning Success

3

Mechanism for Deep Learning Success?

from torchvision import models
model = models.resnet18(pretrained=True)

pred = model(image)

loss = cross_entropy(pred, true_label)

loss.backward()

optimiser.step()

4

Mechanism for Deep Learning Success?

Test Error < Training Error +
Model Capacity
Train Set Size

● Increase model capacity?
○ better train error, worse test error

● Increase train set size?
○ (maybe) worse train error, better test error

● Increase model capacity and train set size?
○ better train and test error!

5

How to Avoid Overfitting?

Classic Solutions

● Try several models with different capacities
● Evaluate validation set performance for each
● Pick the model with best validation performance

Deep learning Issues

● Too many parameters impact capacity
● In context of data scarcity: would pick a simple model that doesn’t provide

deep learning level of performance

6

How to Avoid Overfitting?

Ask yourself:

Would my pipeline give me a similar model if I collected a new training set?

How can we control modelling capacity?

7

Controlling Modelling Capacity: Weight Decay

w1

w2

Problem: might just make us underfit

Benefit of weight decay is often quite marginal
in neural networks

How can we more intelligently allocate modelling capacity?

Minimise Training Loss + ||w||2

8

Overview

● Transfer Learning

● Meta-Learning a Shared Feature Extractor

● Gradient-Based Meta-Learning

● Bayesian Meta-Learning

9

Transfer Learning

“The application of skills, knowledge, and/or attitudes that were learned in one
situation to another learning situation” (Perkins, 1992)

Note
● Fine-tuning ≠ Transfer Learning
● Fine-tuning ⊂ Transfer Learning

10

Transfer Learning: Linear Readout

Copy WeightsFeature
Extractor

Linear Layer

Loss

Source Data + Labels

Feature
Extractor

Linear Layer

Loss

Target Data + Labels

Tuning the model

Use standard methods to
optimise linear model

Conventional validation/cross
validation is typically sufficient

Often work wells for other
types of “heads” as well

Bonus: data augmentation
probably still beneficial

11

Transfer Learning: Fine-Tuning

Initialise WeightsFeature
Extractor

Linear Layer

Loss

Source Data + Labels

Feature
Extractor

Linear Layer

Loss

Target Data + Labels

Back to the mess of deep
learning design choices:

● Which optimiser to use?

● How to tune optimiser
parameters?

● Should we still freeze
some layers?

● Should we do early
stopping?

12

Transfer Learning: Fine-Tuning Considerations

How are we allocating modelling capacity?

● Trying to keep weights near informative initialisation
● Contrast with weight decay: keeping weights near uninformative initialisation

Fine-tuning “tricks”:

● Use a small learning rate
● Do early stopping
● Freeze some layers

○ Early layers if task shift
○ Later layers if input distribution shift

Why not add an explicit regulariser like
weight decay?

13

Transfer Learning: Advanced Fine-Tuning
Penalty Term

Projection Function

proj () θpt θft θpt θft=

Could also:

● Penalise deviations in
activations

● AutoML for which layers to
freeze/unfreeze

14“Distance-Based Regularisation of Deep Networks for Fine-Tuning”, [Gouk, ICLR 2021]

“Explicit Inductive Bias for Transfer Learning with Convolutional Networks”, [Li, ICML 2018]

Transfer Learning: Advanced Fine-Tuning

How to measure distance in weight space?

Capacity ∝ Distance, θpt

Capacity ∝ Distance, θpt, no. units

-PGM denotes projection method
-SP denotes penalty method

15

Overview

● Transfer Learning

● Meta-Learning a Shared Feature Extractor

● Gradient-Based Meta-Learning

● Bayesian Meta-Learning

16

Meta-Learning

fθ∈Θ
ŷx

Θ θ1
 θ2
 θ3

Θ’

P
P1

P2

P3

Capacity ∝ |Θ|

Only use relevant
subset of Θ

Meta-learning finds
this subset

“Meta-train” set

17

Metric-Based Meta-Learning
Basic idea: shared feature extractor (=meta-knowledge), different head for each task

Feature
Extractor

Task 1 Head Task 2 Head Task n Head…

Get tasks from meta-train set

Problem: too many heads
Solution: one task per model update

Problem 2: train new head every update
Solution 2: use a closed form learner

1. Get training task from meta-train
2. Extract features for these instances
3. Fit a shallow model on the features
4. Measure loss of classifier
5. Update feature extractor with

backpropagation + SGD
6. Go to 1

Nearest centroid classifier: use mean feature vector for each class
“Prototypical Networks for Few-Shot Learning”, [Snell, NeurIPS 2017]

18
Support Vector Machine: using a specialised convex solver
“Meta-Learning with Differentiable Convex Optimization”, [Lee, CVPR 2019]

Overview

● Transfer Learning

● Meta-Learning a Shared Feature Extractor

● Gradient-Based Meta-Learning

● Bayesian Meta-Learning

19

Gradient-Based Meta-Learning

Meta-knowledge

Inner problem

Outer problem

Intuitively: find meta-knowledge that gives best performance on held out data

How to solve with gradient-based optimisation?

20

Explicit Gradients
Unroll inner problem optimiser

Implicit Gradients
Agnostic to inner problem solver

Model Agnostic Meta-Learning

21“Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks”, [Finn, ICML 2017]

Meta-knowledge: initial weights

Key Idea: approximate inner problem

Substitute into the outer objective

Need to evaluate Hessian

FO-MAML discards Hessian term

Multiple Inner Steps

22

“On First Order Meta-Learning Algorithms”, [Nichol, arXiv 2018]

Reptile: compute a pseudo-gradient
Pseudo-gradient

Your favourite
SGD variant

Implicit Gradient Methods

Plug pseudo-gradient into any gradient-based optimiser

● It’s possible to differentiate argmin (sometimes)
○ Continuity and convexity requirements not well understood in ML context
○ No need to approximate inner problem!

● Seems to require some expensive Hessian-vector products

Overview

● Transfer Learning

● Meta-Learning a Shared Feature Extractor

● Gradient-Based Meta-Learning

● Bayesian Meta-Learning

23

Bayesian Meta-Learning

Problem: QDA does not work well with small
training datasets—we want different training sets
to give similar models!

Simple probabilistic classifier: fit a Gaussian
to each class with maximum likelihood (QDA)

Solution: Meta-learn a prior on related tasks,
compute full posterior over parameters

Motivation: Bayesian probabilistic modelling
enables incorporating prior knowledge—can we
learn this prior?

24“Bayesian Meta-Learning for Real-World Few-Shot Recognition”, [Zhang, ICCV 2021]

Bayesian Meta-Learning

Note: can use pre-trained feature extractor and still meta-learn prior

Improved calibration: expected calibration
error measures quality of model uncertainty

25

Fin

26

