Meta-Learning for Few-Shot Learning

Henry Gouk

- Transfer Learning
- Meta-Learning a Shared Feature Extractor
- Gradient-Based Meta-Learning
- Bayesian Meta-Learning

Deep Learning Success

Mechanism for Deep Learning Success?

Mechanism for Deep Learning Success?

Test Error < Training Error + Train Set Size

How to Avoid Overfitting?

Classic Solutions

- Try several models with different capacities
- Evaluate validation set performance for each
- Pick the model with best validation performance

Deep learning Issues

- Too many parameters impact capacity
- In context of data scarcity: would pick a simple model that doesn't provide deep learning level of performance

How to Avoid Overfitting?

Ask yourself:

Would my pipeline give me a similar model if I collected a new training set?

How can we control modelling capacity?

Controlling Modelling Capacity: Weight Decay

Minimise Training Loss + ||w||²

Problem: might just make us underfit

Benefit of weight decay is often quite marginal in neural networks

How can we more intelligently allocate modelling capacity?

- Transfer Learning
- Meta-Learning a Shared Feature Extractor
- Gradient-Based Meta-Learning
- Bayesian Meta-Learning

Transfer Learning

"The application of skills, knowledge, and/or attitudes that were learned in one situation to another learning situation" (Perkins, 1992)

Note

- Fine-tuning ≠ Transfer Learning
- Fine-tuning ⊂ Transfer Learning

Transfer Learning: Linear Readout

Tuning the model

Transfer Learning: Fine-Tuning

Back to the mess of deep learning design choices:

Transfer Learning: Fine-Tuning Considerations

How are we allocating modelling capacity?

- Trying to keep weights near informative initialisation
- Contrast with weight decay: keeping weights near uninformative initialisation

Fine-tuning "tricks":

- Use a small learning rate
- Do early stopping
- Freeze some layers
 - Early layers if task shift
 - Later layers if input distribution shift

Why not add an explicit regulariser like weight decay?

Transfer Learning: Advanced Fine-Tuning

Penalty Term

$$\min_{ heta_{ft}} \mathcal{L}(f_{ heta_{ft}}(ec{x}),y) + \lambda d(heta_{ft}, heta_{pt})$$

"Explicit Inductive Bias for Transfer Learning with Convolutional Networks", [Li, ICML 2018]

Projection Function

Could also:

- Penalise deviations in activations
- AutoML for which layers to freeze/unfreeze

"Distance-Based Regularisation of Deep Networks for Fine-Tuning", [Gouk, ICLR 2021]

Transfer Learning: Advanced Fine-Tuning

How to measure distance in weight space?

$$d_{mars}(W,V) = \max_i \sum_j |W_{ij} - V_{ij}|$$

Capacity ∞ Distance, θ_{pt}

$$-V_{ij}|_{4icraft}^{7}$$

Accuracy of EfficientNetB0 Pre-Trained on ImageNet

$$d_{frob}(W,V) = \sqrt{\sum_{ij} (W_{ij} - V_{ij})^2}$$

Capacity \propto Distance, θ_{pt} , no. units

-PGM denotes projection method -SP denotes penalty method

- Transfer Learning
- Meta-Learning a Shared Feature Extractor
- Gradient-Based Meta-Learning
- Bayesian Meta-Learning

Metric-Based Meta-Learning

Basic idea: shared feature extractor (=meta-knowledge), different head for each task

Nearest centroid classifier: use mean feature vector for each class *"Prototypical Networks for Few-Shot Learning", [Snell, NeurIPS 2017]*

Support Vector Machine: using a specialised convex solver "Meta-Learning with Differentiable Convex Optimization", [Lee, CVPR 2019]

- Transfer Learning
- Meta-Learning a Shared Feature Extractor
- Gradient-Based Meta-Learning
- Bayesian Meta-Learning

Gradient-Based Meta-Learning

Meta-knowledge
$$\phi^*$$
 argmin $\sum_{\phi} \mathcal{M}(D_i^{val}, \theta_i^*(\phi), \phi)$ Outer problem
s.t. $\theta_i^*(\phi) = \operatorname*{argmin}_{\theta} \mathcal{L}(D_i^{tr}, \theta, \phi)$ Inner problem

Intuitively: find meta-knowledge that gives best performance on held out data

How to solve with gradient-based optimisation?

Explicit Gradients Unroll inner problem optimiser Implicit Gradients Agnostic to inner problem solver

Model Agnostic Meta-Learning

Meta-knowledge: initial weights

Key Idea: approximate inner problem

$$\theta_i^*(\phi) \approx \phi - \alpha \nabla \mathcal{L}(D_i^{tr}, \phi)$$

Substitute into the outer objective

Need to evaluate Hessian

FO-MAML discards Hessian term

$$\phi^* = \underset{\phi}{\operatorname{argmin}} \sum_{i} \mathcal{M}(D_i^{val}, \phi - \alpha \nabla \mathcal{L}(D_i^{tr}, \phi))$$

"Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks", [Finn, ICML 2017]

Multiple Inner Steps

Plug pseudo-gradient into any gradient-based optimiser

Implicit Gradient Methods

- It's possible to differentiate argmin (sometimes)
 - Continuity and convexity requirements not well understood in ML context
 - No need to approximate inner problem!
- Seems to require some expensive Hessian-vector products

- Transfer Learning
- Meta-Learning a Shared Feature Extractor
- Gradient-Based Meta-Learning
- Bayesian Meta-Learning

Bayesian Meta-Learning

Motivation: Bayesian probabilistic modelling enables incorporating prior knowledge—can we learn this prior?

Simple probabilistic classifier: fit a Gaussian to each class with maximum likelihood (QDA)

Problem: QDA does not work well with small training datasets—we want different training sets to give similar models!

Solution: Meta-learn a prior on related tasks, compute full posterior over parameters

"Bayesian Meta-Learning for Real-World Few-Shot Recognition", [Zhang, ICCV 2021]

Bayesian Meta-Learning

Model	Backbone	1-shot	5-shot	
MAML [37]	Conv-4	58.90 ± 1.90%	$71.50 \pm 1.00\%$	
RELATIONNET [37]	Conv-4	$55.50 \pm 1.00\%$	$69.30 \pm 0.80\%$	
PROTONET [37]	Conv-4	$55.50 \pm 0.70\%$	$72.02 \pm 0.60\%$	
R2D2 [3]	Conv-4	$62.30 \pm 0.20\%$	$77.40 \pm 0.10\%$	
SIMPLESHOT ⁺ [61]	Conv-4	$59.35 \pm 0.89\%$	$74.76 \pm 0.72\%$	
METAQDA	Conv-4	$60.52 \pm 0.88\%$	$77.33 \pm 0.73\%$	
PROTONET [37]	ResNet-12	$72.20 \pm 0.70\%$	83.50 ± 0.50%	
METAOPT [30]	ResNet-12*	$72.00 \pm 0.70\%$	$84.20 \pm 0.50\%$	
UNRAVELLING [14]	ResNet-12*	$72.30 \pm 0.40\%$	86.30 ± 0.20%	
BASELINE++ [4, 37]	ResNet-18	$59.67 \pm 0.90\%$	$71.40 \pm 0.69\%$	
S2M2 [37]	ResNet-18	$63.66 \pm 0.17\%$	$76.07 \pm 0.19\%$	
METAOPTNET [30]	WRN	$72.00 \pm 0.70\%$	84.20 ± 0.50%	
BASELINE++ [37, 4]	WRN	$67.50 \pm 0.64\%$	80.08 ± 0.32%	
S2M2 [37]	WRN	$74.81 \pm 0.19\%$	87.47 ± 0.13%	
METAQDA	WRN	$\textbf{75.83} \pm \textbf{0.88\%}$	$\textbf{88.79} \pm \textbf{0.75\%}$	

Model	Backbone	ECE+TS		ECE	
		1-shot	5-shot	1-shot	5-shot
LIN.CLASSIF.	Conv-4	3.56	2.88	8.54	7.48
SIMPLESHOT	Conv-4	3.82	3.35	33.45	45.81
QDA	Conv-4	8.25	4.37	43.54	26.78
MQDA-MAP	Conv-4	2.75	0.89	8.03	5.27
MQDA-FB	Conv-4	2.33	0.45	4.32	2.92
S2M2+LIN.CLASSIF	WRN	4.93	2.31	33.23	36.84
SIMPLESHOT	WRN	4.05	1.80	39.56	55.68
QDA	WRN	4.52	1.78	35.95	18.53
MQDA-MAP	WRN	3.94	0.94	31.17	17.37
MQDA-FB	WRN	2.71	0.74	30.68	15.86

Improved calibration: expected calibration error measures quality of model uncertainty

Note: can use pre-trained feature extractor and still meta-learn prior

Fin