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Motivation

Like in the algorithm selection setting, we are still in model selection.

Main difference:

▶ Algorithm Selection: candidate set,

▶ HPO/Pipeline Optimization: candidate sequence

Every candidate is evaluated, and we check whether it is the new best one.

Meta-learning can exploit knowledge for two important tasks in this process:

1. influence the sequence in which candidates are generated.

2. accelerate the evaluation of concrete candidates.
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Hyperparameter Optimization

In hyperparameter optimization (HPO), one assumes that we optimize one
machine learning algorithm, e.g., a support vector machine.

The behavior of this algorithm is controlled by k hyperparameters, with
domains Θ1, ..,Θk .

Let Θ := Θ1 × ..×Θk be the space of all combinations of hyperparameter
values. Let m : Θ → R be a performance metric. Then the goal is to find

argmax
θ∈Θ

m(θ)
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Grid Search and Random Search

A grid defines a finite set of candidates: Reduction to algorithm selection.

Common objection: few samples for important hyperparameter.

This can be addressed with a random layout [Bergstra and Bengio, 2012]:

Both approaches ignore the observations.

6 Meta-Learning for Pipeline Optimization - Workshop MK T/C ECML 2022 Grenoble, France



Bayesian Optimization

Since the metric m is a black box, we can see the performance Yθ = m(θ) of
each configuration θ as a random variable.

We could hold an explicit belief model over the distributions of P(Yθ | H), for
each θ, where H = {(θ1,m(θ1)), .., (θn,m(θn))} is a history of observations.

This is what Bayesian Optimization (BO) does:

1. an acquisition function defines a score for each θ based on P(Yθ | H),

2. the optimizer identifies the maximizer θ̃ of the acquisition function

3. the optimizer queries the candidate performance m(θ̃)

4. the optimizer extends H by (θ̃,m(θ̃)) and asks the belief model to update
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Bayesian Optimization

Belief Model (Surrogate)
Acquisition Function

Bayesian Optimizer Evaluation Module

Defines

uses to identify next points

invokes to obtain score

tells score
and updates
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Natural next questions:

▶ how to model the beliefs over the space, i.e. P(Yθ | H)?

▶ what should be the acquisition function?

▶ how can we optimize the acquisition function?
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Bayesian Optimization
Belief Model - Gaussian Processes

Suppose that all hyperparmaters are numeric, i.e., Θi ⊆ R.

Then we can model a belief of how m behaves via a Gaussian Process (GP).

In an, GP the posterior P(Yθ | H) for the performance Yθ of θ is a Gaussian
itself, which can be computed in closed form:

P(Yθ | H) ∼ N (µθ,H, σ
2
θ,H),

where µθ,H and σ2
θ,H are computed from means and covariances in H.

Updating the belief model hence only means to add items to H.
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Bayesian Optimization
Belief Model - Gaussian Processes
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Bayesian Optimization
Belief Model - Random Forests

One shortcoming of GPs: can only treat numerical domains Θi .

Alternative: Train a regression Random Forest based on the data H.

For a new θ, every regression tree in the forest predicts some score. This yields:

1. µθ as the average score across all trees

2. σ2
θ as the variance in the predictions across trees

Again, assuming a normal distribution, this leads to a belief of

P(Yθ | H) ∼ N (µθ, σ
2
θ)
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Bayesian Optimization
Acquisition Functions

A common acquisition function is the expected improvement:

EIτ (θ) :=

∫ ∞

−∞
max{0, yθ − τ}P(yθ|H)dyθ,

where τ is a threshold; typically the currently best known score.

Other acquisition functions are:

1. Probability of Improvement (where can I improve?)

2. Entropy Search (where is the minimum?)

Finding the maximizer of an acquisition function is a hard problem.
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The Pipeline Optimization Problem

In pipeline optimization, one decides about

▶ structure

▶ algorithms

▶ hyperparameters

Many approaches optimize a pre-defined pipeline template, in which slots are
defined for specific algorithm types (scalers, feature selectors, classifiers):
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Pipeline Optimization
Naive AutoML

Hypothesis: Optimizing pipeline slots locally leads to a globally optimal solution.

Naive AutoML

ProbingDataset

Final Candidate

Feature
Scaling

Feature
Selection

Pipelines in returned
candidate pools

Meta Learner Tuning Validation

This is a very simple and fast approach and is hardly ever significantly
outperformed by sophisticated techniques such as BO [Mohr and Wever, 2022].
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Pipeline Optimization
Auto-WEKA/auto-sklearn

Idea: See the pipeline optimization problem as an HPO problem (algorithms =
HPs) with dependencies among hyperparameters, and solve it with BO.

Use one “meta-hyperparameter” for

▶ every algorithm that might occur in the pipeline

▶ every hyperparameter of every algorithm

The optimizer knows the dependencies among these parameters and only
proposes valid configurations.
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Pipeline Optimization
Complex Pipeline Structures

Pipelines can have all sorts of structures not covered by the above approaches:
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ML-Plan
Definition of the Planning Tree
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ML-Plan
Definition of the Planning Tree
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ML-Plan
Traversing the Planning Tree

Two problems arise when searching the tree spanned by the HTN semantics:

▶ the tree is huge and cannot be traversed completely,

▶ we have no classical heuristic values in inner nodes

Typical approaches:

▶ Use an MCTS-like scheme that produces roll-outs under each inner node
and trades off exploration vs. exploitation [Rakotoarison et al., 2019]

▶ Be greedy, i.e., limit exploration to some constant scope. [Mohr et al.,
2018]
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Meta-Learning for HPO and Automated Pipeline Design

Accumulated knowledge is used to ...

▶ define an initial order on candidates (Warm-Starting)

▶ use learning curves to early detect sub-optimality (Early Discarding)

▶ define the sufficient budget to evaluate learner (Budget Picking)
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Warm-Starting

Assume that a set of pipeline optimization problem instances is available.

Simplest idea:

▶ Solve all of them pseudo-optimally, and

▶ assign a score to each algorithm based on its occurrence in best solutions.

This creates a ranking reflecting how well algorithms work on average that can
be used by any pipeline optimizer:

▶ Naive AutoML: sort candidates in each slot based on recommendation

▶ auto-sklearn: evaluate recommended pipelines prior to starting BO

▶ ML-Plan: enforce roll-outs over paths that lead to recommended solutions.
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Warm-Starting
Instance-Specific Algorithm Configuration: Optimal Solutions for Regions

We can warm-start a bit more instance-specific by using dataset meta-features.

One approach based on clustering is ISAC [Kadioglu et al., 2010].

Offline Phase:

▶ create a clustering on the dataset meta-features (flexible k, e.g., g-means).

▶ find θ∗ (or ranking) for each cluster using exhaustive optimization.

Online Phase:

▶ for a new problem instance, identify closest cluster.

▶ evaluate candidates in the order suggested for this cluster.
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Warm-Starting
Ranking Problems by Proximity

A special case of ISAC is where we have a (pseudo-)optimal solution for every
previous instance available.

In that case, we can

▶ associate the dataset meta-features with the best (k) pipeline(s) for a
specific problem instance

▶ for a new instance,
▶ compute the dataset meta-features,
▶ sort all the known cases by their distance in terms of dataset meta-features,
▶ use this distance to create a ranking of candidates by the best solutions to

those instances
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Warm-Starting
πBO: Placing a Prior in a Belief Model

πBO [Hvarfner et al., 2022] is a simple extension of the BO framework.

In each iteration, one picks

argmax
θ

α(θ,H)π(θ),

where

▶ α is some acquisition function and

▶ π is simply a weight function over the configuration space.

π can be encoded data-driven or by an expert.
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Early Discarding
Using Learning Curves to Determine Similarity

Idea: Instead of evaluating on the full budget, evaluate on some cheap budgets.

Now leverage knowledge of rankings for these budgets ...

▶ ... for same learners on other datasets [Leite and Brazdil, 2008]

▶ ... for other learners on same dataset [Chandrashekaran and Lane, 2017]
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Early Discarding
Learning Curve Based Cross Validation (LCCV)

Another common approach is to compare the extrapolation of a single learning
curve with some baseline.

This is done in the learning curve based cross validation (LCCV) [Mohr and van
Rijn, 2021].
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Early Discarding
Freeze-Thaw BO

Model learning curves with a GP, and only keep training candidates whose curve
has a competitive (extrapolated) limit value [Swersky et al., 2014].

This requires that learners can be trained incrementally.
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Early Discarding
Probabilistic Forecast

GPs are not good at extrapolation, so [Domhan et al., 2015] propose to use
established learning curve models instead:

Approach

▶ Estimate the model parameters are estimated with MCMC.

▶ Quantify the probability that a partially observed curve will eventually
exceed the best performance observed so far.

▶ Discard the candidate if the probability is too low.
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Budget Picking
FaBOLAS

For non-incremental learners, it seems desirable to pick the smallest budget that
still gives sufficiently reliable results. FaBOLAS does this [Klein et al., 2017].

The evaluation budget s (portion in [0, 1]) becomes subject of optimization
itself, and a model is learned on this. No offline knowledge is used.
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Summary

Meta-Learning can be used for HPO and pipeline optimization.

This is done mainly with two goals:

▶ Influencing the order in which candidates are generated.

This is achieved by warm-starting (often contextualized).

▶ Increasing efficiency of candidate evaluations.

This is achieved using learning curves for
▶ Early Discarding

▶ Budget Selection
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F. Mohr, M. Wever, and E. Hüllermeier. Ml-plan: Automated machine learning via hierarchical planning. Machine Learning, 107(8):
1495–1515, 2018.

H. Rakotoarison, M. Schoenauer, and M. Sebag. Automated machine learning with monte-carlo tree search. arXiv preprint
arXiv:1906.00170, 2019.

K. Swersky, J. Snoek, and R. P. Adams. Freeze-thaw bayesian optimization. CoRR, abs/1406.3896, 2014.

31 Meta-Learning for Pipeline Optimization - Workshop MK T/C ECML 2022 Grenoble, France

https://arxiv.org/abs/2204.11051

	Candidate Generating Procedures
	Meta-Learning for HPO and Automated Pipeline Design
	References

