

Tutorial/Workshop @ ECML PKDD 2022 Meta-Knowledge Transfer/Communication in Different Systems Jan N. van Rijn, Pavel Brazdil, Henry Gouk, Felix Mohr

Metalearning for Algorithm/Workflow Selection

Pavel Brazdil Prof. Emeritus, U.Porto

23 Sept 2022

Overview	Duration ≈ 32 min.		
Introduction	(4-8)		
1. Workflow Selection with Average Ranking (AR)	(9-13) (Ch. 2)		
2. Utilizing Accuracy and Runtime as a Measure	(14-16) (Ch. 5)		
3. Using Dataset Characteristics (meta-features)	(17-26) (Ch. 4)		
4. Active Testing	(26-30) (Ch. 5)		
6. Utilizing Learning Curves (Ch 5, Lear	(Ch 5, Learning Curves Survey)		

2

3

Acknowledgements

The work presented benefited from joint work with:

Salisu M. Abdulrahman, Miguel V. Cachada, Maria J. Ferreira, Fernando Freitas, João Gama, Rui Leite, Jan van Rijn, Carlos Soares

Introduction (1)

Typical task is to **recommend a workflow (pipeline)** of operations for a given task (e.g. classification)

Ch. 2

There may be many thousands of variants to select from !

Introduction (2)

Distinguish:

 1. The current task is another similar problem in the same domain
 => Use metalearning methods exploiting information about past experiments on similar tasks (meta-data)

2. The current task is a new problem in a given domain
 => Use AutoML exploiting information
 about past experiments on the same task

What is metalearning?

A meta-learning system must include a learning subsystem, which adapts with experience.

Experience is gained by exploiting metaknowledge extracted:

- a) in a previous learning episode on a single dataset and/or
- b) from different domains or problems.

(Lemke et al., 2015)

6

Introduction (4)

7

Phase 1. Generate the meta-level model

Phase 2. Apply the meta-level model to the target dataset to obtain the recommended workflow

Basic types of meta-level models:

Relative performance models

- Pairwise comparisons
- Ranking approaches (e.g. Average ranking) <= Discussed next

Empirical performance models (EPM's) (exploited in AutoML)

Regression models, capable of predicting performance;
 They are useful in the search for the best hyperparameter configuration

1. WF Selection with Average Ranking (AR) (2)

Example:

Merging rankings R1 and R2 of algorithms/workflows a1.. a6, (obtained on datasets D1 and D2) into average ranking:

(1+3)/2 => 2

Rank	R1 on D1	R2 on D2	Average Rank	Rank	Average Ranking
1	a ₁	a ₂	r(a ₁)=2.0	1-2	a ₁ , a ₃
2	a ₃	-a ₃	r(a ₂)=2.5	3	a ₂
3	a ₄	∂a 1	r(a ₃)=2.0	4-5	a ₄ , a ₆
4	a ₂	a ₆	r(a ₄)=4.5	6	a ₅
5	a ₆	a ₅	r(a ₅)=5.5		
6 Wo		a ₄ Brazdil - Meta-learning t	$r(a_6)=4.5$		

10

1. WF Selection with Average Ranking (AR) (3)

Phase 2. Apply the meta-level model (AR) to the target dataset to obtain the recommended workflow

- Use the top algorithm/workflow in the average ranking to initialize a_{best} (incumbent)
- Go through all algorithms/workflows in the ranking sequentially & evaluate each one on a validation set
- If some algorithm a_c achieved a better performance than a_{best} , then **update current best** alternative (i.e., set $a_{best} \leftarrow a_c$.)
- After this process has terminated, return a_{best}

1. WF Selection with Average Ranking (AR) (4)

Evaluating the AR selection method How good is the ranking? How can we evaluate this?

- We need to know in advance the performance of a*, the best algorithm/workflow in the ranking.
- Calculate accuracy loss of each algorithm wrt. a*, as we go testing the algorithms/workflows in the ranking.

2. WF Selection with Average Ranking (AR) (5)

Questions:

- Is it a good idea to rank workflows on accuracy (or AUC etc.)?
- If not, why not?
- Is there an alternative?

Ch. 2

2. Utilizing Accuracy and Runtime as a Measure (1)

Answers:

- Ranking workflows solely on accuracy has disadvantages. Accurate workflows can be rather slow to test.
- A better alternative is to rank workflows on a combined measure of accuracy and time (e.g., A3R').

This permit to identify workflows/algorithms with reasonable performance soon. This is **important**, if we want to have **any-time result**.

2. Utilizing Accuracy and Runtime as a Measure (2)

- Ranking workflows solely on accuracy has disadvantages. Accurate workflows can be rather slow to test.
- A better alternative is to rank workflows on a combined measure of accuracy and time, e.g., A3R':

2. Utilizing Accuracy and Runtime as a Measure (3)

The resulting ranking method is referred to as AR* It lead to **excellent results**, as the following **loss curves** show:

3. Using Dataset Characteristics (1)

Observation 1: Rankings on similar datasets are similar.

This can be exploited to generate better rankings and hence better loss curves.

Basically, it is necessary to select a subset of similar algorithms/rankings and rank them and conduct tests

How can we measure dataset similarity?

Ch. 3

Observation 2:

Dataset characteristics (metafeatures) may help
to discriminate between potentially good/bad performers.
This idea was followed in the 90's to pre-select good performers.

But let us come back to observation 1 and the question: How can we measure dataset similarity?

3. Using Dataset Characteristics (3)

Dataset similarity can be established

on the basis of dataset characteristics (metafeatures)

These depend on the task:

- Classification
- Regression
- Time series
- Clustering
- OR and Optimization,

Here we focus on classification tasks.

3. Using Dataset Characteristics for Classification (4)

Simple

20

Statistical

No. of examples No. of attributes No. of classes Proportion of discreet attributes Proportion of missing values Proportion of outliers, etc.

Skewness of x_i Kurtosis of x_i Correlation of x_i and x_i , etc.

Information-theoretic

Feature entropy of x_i Class entropy of x_i Mutual information between x_i and y Etc.

3. Using Dataset Characteristics for Classification (6)

Performance-based characteristics (meta-features):

Landmarkers

22

Performance of simple algorithms, such as:

- decision stump or decision tree
- ► 1NN,
- linear discriminant

characterizes linear separability

characterizes data separability

Relative landmarkers

difference (or ratio) in performance of algorithms/workflows a_k and a_{best} (incumbent) on a dataset d_i

3. Using Dataset Characteristics for Classification (7)

Performance-based characteristics (meta-features):

Subsampling landmarkers

performance of algorithms/workflows on different samples of data

Learning curves

performance of algorithms/workflows on different samples of increasing size

3. Using Dataset Characteristics for Classification (8)

Performance-based characteristics (meta-features)

Two (or more) datasets are similar, if the performance characteristics (e.g., relative landmarkers, learning curves, etc.) of a given algorithm on these datasets are similar.

Cosine-based similarity between datasets:

$$Sim_{cos}(d_{new}, d_i) = \frac{p(\mathbf{a}, d_{new}) \cdot p(\mathbf{a}, d_i)}{|p(\mathbf{a}, d_{new})|_2 * |p(\mathbf{a}, d_i)|_2} \qquad \text{Dot product of two vectors}$$
$$Performance of a_k on d_i$$
$$Sim_{cos}(d_{new}, d_i) = \frac{\sum_{a_k \in \mathbf{a}} p(a_k, d_i) * p(a_k, d_{new})}{|p(\mathbf{a}, d_{new})|_2 * |p(\mathbf{a}, d_i)|_2} \qquad \text{This measure was used in one variant of AT (see later)}$$

3. Using Dataset Characteristics for Classification (8)

Performance-based characteristics (meta-features):

25

Two (or more) algorithms are similar, if the performance characteristics (e.g., relative landmarkers, learning curves, etc.) of a given dataset (d_i) of these algorithms are similar.

This can be exploited, e.g., to predict the future points of a given partial learning curve:

4. Active Testing (1)

The AR* method has a shortcoming:

It tests the algorithms/workflows in the ranking sequentially.

This gives rise to the problems, as the algorithm portfolio may contain:

- Algorithms/workflows with sub-optimal performance
- Potentially redundant algorithms/workflows

(e.g. variants of the same algorithm with different parameter settings).

Time can be wasted by testing.

How can this be avoided?

4. Active Testing (2)

Eliminating sub-optimal and potentialy redundant algorithms

In pre-processing stage Filter-like method that reduces the given configuration space (more details are given later)

Incorporated within a given metalearning/AutoML algorithm One particular solution - Active testing method

4. Active Testing (3)

Active Testing Method (e.g. Leite, Brazdil & Vanschoren, 2012)

- It does not follow the ranking!
- It jumps to the most promising algorithm a_c,
 based on the *expected performance gain*, over a_{best}
 (earlier was called *relative landmarker*)

4. Active Testing (5)

Performance gain of algorithm/workflow a_i wrt. a_{best} on d_i:

 $\Delta P(a_j, a_{best}, d_i) = A \Im R^{d_i}_{a_{best}, a_j} = \frac{P^{d_i}_{a_j} / P^{d_i}_{a_{ref}}}{(T^{d_i}_{a_j} / T^{d_i}_{a_{ref}})^Q}$

Identifying the best competitor requires summing up for various datasets:

Remaining datasets

Remarks:

29

- defined in terms of A3R leads to better results than accuracy (Abdulrahman, et al., 2018)
- It is not necessary to limit the sum to values greater than 1 (Leite, R. and Brazdil, P., 2021)

4. Active Testing (6)

The active testing method leads to good results:

(Abdulrahman, et al., MLJ, 2018):

References

 SM Abdulrahman, P Brazdil, J van Rijn and J Vanschoren: Speeding up Algorithm Selection using Average Ranking and Active Testing by Introducing Runtime, *Machine Learning Journal*, Jan. 2018
 P Brazdil, J Gama, B Henery, Characterizing the applicability of classification algorithms using metalevel learning, *Machine Learning: ECML-94*, 83-102

- PB Brazdil, C Soares, JP da Costa: Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results, *Machine Learning 50 (3),* 251-277, 2003
- PB Brazdil, JN van Rijn, C Soares, J Vanschoren, Metalearning: Applications to Automated Machine Learning and Data Mining (2nd ed.), Springer, 2022, Chapters 2,4,5
- Leite, R. and Brazdil, P. (2021). Exploiting performance-based similarity between datasets in metalearning. In AAAI Workshop on Meta-Learning and MetaDL Challenge, vol. 140, pages 90–99. PMLR.
- F Serban, J Vanschoren, JU Kietz and A Bernstein: A Survey of Intelligent Assistants for Data Analysis, ACM Computing Surveys, 2013
- K.Smith-Miles: Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection, ACM Computing Surveys, 2008