Meta-Knowledge Transfer
Communication in Different
Systems

Pavel Brazdil (University of Porto, INESC Tec, Portugal)
Jan N. van Rijn (Leiden University, the Netherlands)
Felix Mohr (Universidad de La Sabana, Colombia)
Henry Gouk (University of Edinburgh, Scotland)

ecML -~ ?
PKDD LIAAD © E
Ll 2022 INEsCIEC

-E-¥-% Universiteit
Al \ied) Leiden

Universidad de

La Sabana




~ R
data pre- feature —
. classﬁlerj .
| processor Preprocessor -
X ML frainework)
name
Many design choices, hyperparameters, pre-
processing methods, etc. The best decision AdaBoost (AB)
differs per dataset Bernoulli naive Bayes

decision tree (DT)
extreml. rand. trees
Gaussian naive Bayes
aradient boosting (GB)
kNN

LDA




Algorithm Selection Problem

* Canonical question: given dataset D, should we use a random forest or a
neural network to maximize the final model's performance on a test set?
* Binary variant, outdated
* Many human intuition can be encoded and improved by using algorithmic reasoning

* Problem can be generalized to multi-class classification, ranking or
regression problem

* Solutions considered

* The algorithm selection framework (data characteristics, meta-features)
* Utilizing earlier performance measures (active testing)
* Learning curves



Hyperparameter Optimization Problem

* Canonical question: given dataset D and algorithm A, how should we
set the hyperparameters of A to maximize the final model's
performance on a test set?

* Concept of a search space, mixed hyperparameter types, hierarchy
and conditions

* Concept of distance and assumption of smoothness



scikit
. m Install User Guide

scikit-learn 0.23.2
Other versions

Please cite us if you use the
software.

sklearn.svm.SVC
Examples using sklearn.swm.SVC

API

Examples More ~ Go

sklearn.svm.SVC

class sklearn.svm. SVC(* C=1.0, kernel="rbf’, degree=3, gamma="scale’, coef0=0.0, shrinking=True, probability=False,
tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape="ovr', break_ties=False,
random_state=None) [source]

C-Support Vector Classification.

The implementation is based on libsvm. The fit time scales at least quadratically with the number of samples and may be
impractical beyond tens of thousands of samples. For large datasets consider using sklearn.svm.LinearSVC or
sklearn.linear_model.SGDClassifier instead, possibly after a sklearn.kernel_approximation.Nystroem transformer.

The multiclass support is handled according to a one-vs-one scheme.

For details on the precise mathematical formulation of the provided kernel functions and how gamma, coef@ and degree
affect each other, see the corresponding section in the narrative documentation: Kernel functions.

Read more in the User Guide.

Parameters: C: float, default=1.0
Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly
positive. The penalty is a squared 12 penalty.

kernel : {!linear’, ‘poly’, ‘rbf’, 'sigmoid’, ‘precomputed’}, default="rbf’
Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’ 'sigmoid’,
‘precomputed’ or a callable. If none is given, 'rbf” will be used. If a callable is given it is used to pre-
compute the kernel matrix from data matrices; that matrix should be an array of shape
(n_samples, n_samples).

degree : int, default=3
Degree of the polynomial kernel function ("poly’). Ignored by all other kernels.

gamma : {"scale’, ‘auto’} or float, default="scale’
Kernel coefficient for 'rbf’, ‘poly’ and 'sigmoid".

® if gamma="'scale’ (default) is passed then it uses 1/ (n_features * X.var()) as value of gamma,
» if ‘auto’ uses 1/ n_features.

Changed in version 0.22: The default value of gamma changed from ‘auto’ to 'scale’.

coef0 : float, default=0.0
Independent term in kernel function. It is only significant in ‘poly’ and 'sigmoid’.



Install User Guide APl Examples Community More~

| 6]

sklearn.neural network.MLPClassifier

scikit-learn 1.0.2

Ag e class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation="relu’, *, solver="adam’, alpha=0.0001,
Please cite us if you use the soft- batch_size="auto’, learning_rate="constant’, learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None,
ware. tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,

validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000) [source]
sklearn.neural network.MLPCla

ssifier
Examples using
sklearn.neural network.MLPClass

Multi-layer Perceptron classifier.
This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

New in version 0.78.

Parameters: hidden_layer_sizes : tuple, length = n_layers - 2, default=(100,)
The ith element represents the number of neurons in the ith hidden layer.

activation : {‘identity’, logistic’, ‘tanh’, relu’}, default="relu’
Activation function for the hidden layer.

» ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x
» ‘logistic’, the logistic sigmoid function, returns f(x) = 1/ (1 + exp(-x)).

= ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).

» ‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

solver : {'Ibfgs’, 'sgd’, ‘adam’), default="adam’
The solver for weight optimization.

» ‘Ibfgs’ is an optimizer in the family of quasi-Newton methods.
» ‘sgd' refers to stochastic gradient descent.
» ‘adam’ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba

Note: The default solver 'adam’ works pretty well on relatively large datasets (with thousands of training
samples or more) in terms of both training time and validation score. For small datasets, however, ‘Ibfgs’ can
converge faster and perform better.

alpha : float, default=0.0001
L2 penalty (regularization term) parameter.



Combined Algorithm Selection and
Hyperparameter Optimization Problem

* Combines the algorithm selection and hyperparameter optimization
problem

* Given a search space consisting of algorithms and hyperparameters,
find the algorithm and its hyperparameters that maximize the final
model's performance

* Usually achieved by introducing a hierarchical search space, where
the root node is the selection of algorithm, and the child nodes are
the various options with their hyperparameters (there can be nested
hierarchies)



Workflow Synthesis

* Various pre-processing
components
* Normalize data
* PCA
Feature Selection
Feature Transformation
* Many more!

* All with their own
hyperparameters

Pipeline
preprocessor: Pipeline

________________________________________________________________________________________________________

data_transformer: ColumnTransformer

numerical categorical
; SimpleImputer é g SimpleImputer :
EéSimpleImputer(strategy='median')é §SimpleImputer(strategy='constant')é
é StandarLScaler ? g OneHoténcoder .
éStandardScaler()é éOneHotEncoder(handle*unknownz'ignore')ﬂ
____________________________________________________ e s
PCA

éPCA(n_components=10)§
z ! i

LogisticRegression

ELogisticRegression(C=0.1, max_iter=10000, random_state=0, solver=‘newton—cg')i

Figure from towardsdatascience.com




Transfer Learning for Few Shot Learning

* Traditional machine learning requires large amount of data, whereas
humans only need few examples to learn a new concept

* Assumptions: humans are able to transfer experience from earlier
learned tasks

* Solution types: Model Agnostic Meta-Learning (MAML), REPTILE

5 classes with 1 sample/class (5-ways, 1-shot)

Task 1 with dataset 1

Meta-
Task 2 with dataset 2 9 Trai?
(with 5 different classes) e

D.‘mn’n i ’ . “ Dh-.-c.f J

3 4 5 i ? N
:'h . 15 k_!
\ Dh'uirf . D

test \ 4

¢ i
Figure taken from Jonathan \ ) ) \

Hui (Mediu m) Support (a.k.a. task training data) Query (a.k.a. task testing data)




Pavel Brazdil
University of Porto

Professor Emeritus

PhD thesis on Metalearning
1981

Algorithm selection
Meta-features

Active testing

Learning curves

Jan N. van Rijn
Leiden University

Assistant Professor
OpenML.org

Hyperparameter Importance
(with Frank Hutter)

Deep Learning / meta-learning
AutoML for Neural Network
Verification

Felix Mohr
Universidad de La Sabana

Associate Professor

MLPlan for Hyperparameter
Optimization

Naive AutoML as a baseline for
AutoML

Learning Curves

Metalearning competition

2 Universiteit
) Leiden

Universidad de

La Sabana

Henry Gouk
University of Edinburgh

Research Fellow (eq. Assistant
Professor)

Deep Meta-learning

Transfer learning

Theory-driven machine learning

10



Combined Tutorial and Workshop

Program, slides and other material: https://metalearning-research.org/

* Tutorial on Metalearning * Workshop on meta-knowledge
e Aimed at the book on transfer and communication
: petween systems
Metalearning

* Looks at the future of meta-
earning

* Various canonical techniques are

being discussed

* http://metalearning- * Symbolic reasoning

research.org/ * keynote speakers, Timothy
Hospedales and Pascal Hitzler



Content of the Tutorial

(Mostly) based on the book: Metalearning: applications to Automated Machine Learning and Data Mining, 2nd

edition (2022, Open Access)

Cognitive Technologies Y I n t rO d

. * Meta-
Metalearning [

uction (JVR)

* Metalearning for Algorithm Selection (PB/FM)

earning for Pipeline Optimization (FM)
oreak (10m) & Q&A

* Few-s
* Other

Second Edition

OPEN ACCESS

hot learning (HG)
developments and considerations

(PB/JVR)
* Outlook (PB) & short Q&A

12



	Meta-Knowledge Transfer Communication in Different Systems
	Slide 2
	Algorithm Selection Problem
	Hyperparameter Optimization Problem
	Slide 5
	Slide 6
	Combined Algorithm Selection and Hyperparameter Optimization Pr
	Workflow Synthesis
	Transfer Learning for Few Shot Learning
	Slide 10
	Combined Tutorial and Workshop
	Content of the Tutorial

